Project Icon

HybridNets

实时多任务交通场景感知网络

HybridNets是一个实时多任务交通场景感知网络,集成了交通对象检测、可行驶区域分割和车道线检测功能。该网络可在嵌入式系统上实时运行,在BDD100K数据集的目标检测和车道检测任务中达到了最先进水平。HybridNets平衡了实时性能和多任务准确性,为自动驾驶和高级驾驶辅助系统提供了高效的视觉感知解决方案。

FocalNet - 突破注意力机制的新型视觉模型架构
FocalNetsGithub卷积神经网络图像分类开源项目目标检测语义分割
FocalNet是一种创新的视觉模型架构,无需使用注意力机制。其核心的焦点调制技术在多项视觉任务中超越了现有的自注意力方法。该模型在ImageNet分类和COCO检测等基准测试中表现优异,同时保持了高效简洁的实现。FocalNet具有平移不变性、强输入依赖性等特点,为计算机视觉领域提供了一种全新的建模思路。
D-FINE - 精细化分布优化在实时物体检测中的应用
D-FINEDETRFine-grained Distribution RefinementGithub对象检测开源项目自蒸馏
D-FINE是一款实时物体检测工具,通过重新定义DETRs中的边框回归任务为精细化分布优化(FDR)以及引入全局最优定位自蒸馏(GO-LSD),在不增加推理和训练成本的情况下,提升了检测性能。它在复杂街道场景下具有出色的定位能力,对于逆光、运动模糊和密集人群等挑战表现优异。最新版本增强了预训练模型的性能并提供了自定义数据集微调和输入尺寸调整的配置。
ISBNet - 高效准确的3D点云实例分割网络实现先进场景理解
3D点云GithubISBNet实例分割开源项目深度学习计算机视觉
ISBNet是一种创新的3D点云实例分割网络,采用实例感知采样和框感知动态卷积技术。通过多任务学习方法和轴对齐边界框预测,ISBNet在ScanNetV2、S3DIS和STPLS3D等数据集上实现了领先的分割精度,同时保持快速推理速度。该方法有效解决了密集场景中相同语义类别物体的分割问题,为3D场景理解提供了新的解决方案。
SINet - 先进的伪装目标检测算法,提升检测精度和效率
COD10K数据集Camouflaged Object DetectionGithubSINet开源项目目标检测计算机视觉
SINet是一种伪装目标检测算法,模仿人类视觉系统结构和动物捕食行为来提高检测精度。该算法在COD10K等数据集上性能优异,建立了新的基准。SINet具备实时推理能力,适用于多种实际应用场景。
Forge_VFM4AD - DriveGAN实现高质量可控神经网络环境模拟
Github人工智能基础模型开源项目深度学习自动驾驶计算机视觉
DriveGAN是一种高质量神经网络模拟器,通过无监督学习实现环境组成部分的解耦控制。它可模拟转向控制、场景天气和非玩家对象位置等特征。DriveGAN的全微分特性支持视频序列重新模拟,允许在已记录场景中采取不同行动。该方法在多个数据集上训练,包括160小时真实驾驶数据,性能显著优于现有技术。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
NeuralNetworkRacing - 基于神经网络的2D自动驾驶模拟器
2D模拟Githubpyglet开源项目神经网络自动驾驶进化算法
NeuralNetworkRacing是一个使用Python开发的2D自动驾驶模拟项目。它结合神经网络和进化算法,训练虚拟汽车在生成的赛道上自主行驶。项目基于pyglet和numpy库实现,包含环境模拟、赛道生成等功能。通过配置文件,用户可以调整人口数量、突变率等参数。该开源项目为AI和自动驾驶领域提供了一个实验平台。
yolor - 改进的多任务统一网络实时对象检测模型
GithubYOLORYOLOv4多任务学习对象检测开源项目深度学习
该项目实现了一个新型多任务统一网络,基于最新论文支持多任务并在COCO数据集中的实时对象检测上表现出色。优化后的YOLOR模型在测试和验证中均显示出较高的AP值和运行速度,适用于多种实时应用场景。项目提供了详细的安装、训练和测试指南,支持Docker和Colab环境,适合研究人员和开发者在复杂场景中进行高效的对象检测。
DAMO-YOLO - 基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术的对象检测算法
DAMO-YOLOGithub开源项目性能优化检测模型目标检测算法更新
DAMO-YOLO, 阿里巴巴DAMO实验室的先进对象检测技术,基于YOLO系列和嵌入包括神经网络架构搜索及轻量级算法在内的多项新技术,以优化性能和效率。针对广泛行业场景,提供一站式解决方案,从训练到部署全面支持。
corenet - 用于训练多任务深度神经网络的工具库
CoreNetGithub开源项目模型训练深度学习神经网络计算机视觉
CoreNet是一款多功能深度神经网络工具库,支持训练各种规模的标准和创新模型。它适用于基础模型、计算机视觉和自然语言处理等多个领域。该项目提供可复现的训练方案、预训练模型权重和针对Apple Silicon优化的MLX示例,有助于推动AI研究和应用的发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号