Project Icon

TFB

时间序列预测评估框架

TFB是一个为时间序列预测研究设计的开源库。它提供清晰的代码库,支持对预测模型进行端到端评估,并通过多种策略和指标比较模型性能。TFB特点包括多样化数据集、全面基线模型、灵活评估策略和丰富评估指标。研究人员可利用TFB开发新方法或评估自有时间序列数据。

chronos-t5-large - T5架构驱动的大规模时间序列预测基础模型
ChronosGithubHuggingfaceT5架构开源项目时间序列预测概率预测模型预训练模型
Chronos-T5-Large是一个大规模时间序列预测基础模型,基于T5架构设计,包含7.1亿参数。模型通过将时间序列转换为token序列进行训练,能够生成概率性预测结果。它在海量公开时间序列数据和合成数据上训练,适用于广泛的时间序列预测任务。研究人员可使用简洁的Python接口调用模型,获取未来趋势预测及相应的置信区间。
tfcausalimpact - TensorFlow实现的因果影响分析库
CausalImpactGithubTensorFlow因果推断开源项目时间序列分析贝叶斯结构模型
tfcausalimpact是一个基于TensorFlow实现的因果影响分析库。该工具利用贝叶斯结构模型分析干预前后的数据,评估干预效果。支持Python 3.7-3.11,提供统计结果输出和可视化功能。通过变分推断和HMC两种拟合方法,在分析精度和计算性能间实现平衡。适用于研究人员和数据科学家进行因果推断分析,操作简便,功能强大。
pydlm - 基于Python的贝叶斯时间序列建模库
GithubPyDLMPython库开源项目数据分析时间序列建模贝叶斯动态线性模型
pydlm是一个Python时间序列建模库,基于贝叶斯动态线性模型。它提供了快速的模型拟合和推断,包含趋势、季节性和动态回归等灵活组件。支持前向过滤、后向平滑和长期预测,并具有简洁的API。pydlm适用于构建复杂时间序列模型,进行数据分析和预测。
OpenSTL - OpenSTL:时空预测学习的全面基准和模块化框架
GithubNeurIPS 2023OpenSTLPyTorch开源项目数据集时空预测
OpenSTL是一个全面的时空预测学习基准,涵盖了从合成运动物体轨迹到人体运动、驾驶场景、交通流量和天气预报的多样任务。该框架模块化设计并具有良好的扩展性,支持PyTorch Lightning和原始PyTorch实现。其主要功能包括灵活的代码设计和标准基准,组织严密并易于使用。
LTSF-Linear - 线性模型在时间序列预测中的应用
AAAI 2023DLinearGithubLTSF-LinearTransformers开源项目时间序列预测
LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。
finnts - 微软开发的时间序列预测框架
Azure集成Github开源项目时间序列预测自动化建模财务预测
finnts是微软开发的时间序列预测框架,提供自动化特征工程、选择、回测和模型选择功能。支持25种以上单变量和多变量模型,可处理多种时间尺度的预测。框架支持外部回归变量,能与Azure集成实现云端并行处理。虽源于金融领域,但适用于各类时间序列预测问题。
CodeTF - 代码大语言模型和智能开发的全方位工具库
CodeTFGithub代码操作代码智能开源项目推理管道模型微调
CodeTF是一个为代码大语言模型和代码智能设计的Python库。它提供训练和推理接口,支持代码摘要、翻译和生成等任务。该库还包含多语言代码操作工具、预训练模型和评估基准。CodeTF简化了复杂流程,为开发者提供了一个便捷的环境来将先进的代码大语言模型集成到实际应用中。
FL-bench - 开源联邦学习基准测试平台
FL-benchGithub个性化联邦学习开源项目算法实现联邦学习领域泛化
FL-bench是一个开源的联邦学习基准测试平台,实现了多种经典和前沿算法。平台支持个性化联邦学习和域泛化等研究方向,提供简单接口用于自定义数据集和模型。集成了可视化工具,方便研究人员快速实现和对比不同方法。FL-bench旨在促进联邦学习领域的创新与发展。
UniTS - 统一时间序列模型实现多领域任务处理
GithubUniTS多任务学习开源项目时间序列模型迁移学习零样本学习
UniTS是一种统一的时间序列模型,可处理多领域的分类、预测、插补和异常检测任务。该模型使用共享参数方法,无需任务特定模块,在38个多领域数据集上表现优异。UniTS具有零样本、少样本和提示学习能力,能适应新的数据领域和任务。其创新的统一网络主干融合了序列和变量注意力机制以及动态线性运算符,为时间序列分析提供了灵活的解决方案。
TimeMoE-50M - 混合专家时间序列预测基础模型 提升大规模数据分析能力
GithubHuggingfaceTimeMoE基础模型开源项目时间序列预测模型深度学习混合专家模型
TimeMoE-50M是一个基于混合专家(MoE)架构的时间序列预测基础模型,专为处理十亿规模数据而设计。此模型旨在优化大规模时间序列分析的准确性和效率。开发者可在GitHub页面上找到详细的使用指南和实现方法,有助于将其整合到各类时间序列分析项目中,提升预测能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号