Project Icon

machine-learning-yearning-cn

阅读《机器学习训练秘籍》中文版并参与翻译

在线阅读《机器学习训练秘籍》中文版,了解机器学习训练指南。此版本为预览版,欢迎通过项目Issues、Pull Request或邮件参与翻译改进。本项目遵循CC BY-NC-SA 4.0协议,允许共享和演绎但需署名且非商业使用。

MachineLearning-QandAI-book - 深入探讨机器学习和人工智能领域的30个核心问题
GithubSebastian Raschka人工智能开源项目机器学习深度学习自然语言处理
该书通过30个章节探讨机器学习和人工智能领域的核心问题,内容涵盖基础概念和前沿技术。涉及多GPU训练范式、Transformer微调、编码器和解码器型LLM差异、视觉Transformer等主题。每章提供详细解释和扩展阅读资料,适合希望扩展知识并了解最新AI技术的读者。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
python-machine-learning-book-2nd-edition - Python机器学习与深度学习实用指南
GithubPackt PublishingPython Machine Learning开源项目数据科学机器学习深度学习
本书详细介绍机器学习和深度学习的核心概念,教你使用Python及其主要库(如Scikit-Learn和TensorFlow)进行数据处理、分类、回归和模型优化。书中包含丰富的示例代码和Jupyter笔记本,帮助读者理解复杂的数学理论和实现步骤,是数据科学家和工程师学习和提升机器学习技能的理想选择。
machine-learning-list - 机器学习入门与语言模型学习指南
ElicitGithub开源项目机器学习深度学习生产部署语言模型
这个指南旨在帮助员工掌握机器学习,尤其是语言模型的知识。内容涵盖从基础到高级,通过推荐阅读的论文和资源,了解生产部署与长期扩展的重要技术和方法。
key-book - 深入理解机器学习理论的关键概念与应用
DatawhaleGithubKey-book参考笔记开源项目机器学习机器学习理论导引
《钥匙书》是《机器学习理论导引》的补充读物,帮助读者理解机器学习中的七大关键概念:可学性、复杂度、泛化界、稳定性、一致性、收敛率和遗憾界。通过详细的证明补充、案例解析和概念扩展,解决读者在学习中遇到的难题,提供实时更新的在线阅读资源,非常适合深入研究机器学习理论的读者。
hands-on-ml-zh - Sklearn和TensorFlow机器学习指南
GithubPythonSklearnTensorFlow开源项目数据分析机器学习
本指南详细介绍了如何使用Sklearn和TensorFlow进行机器学习,包括在线阅读、Docker镜像、PYPI包和NPM包的多种下载方式,并提供了完整的编译和安装步骤。通过该指南,读者能够学习和掌握数据分析及机器学习的实用技能。
Machine-Learning-Guide - 全面的机器学习指南,从基础到前沿应用
Github人工智能开源项目机器学习深度学习自然语言处理计算机视觉
这份机器学习指南涵盖了从基础概念到前沿技术的各个方面,包括丰富的学习资源、主流框架工具介绍和热门应用领域。指南详细讲解了算法、深度学习、强化学习等核心主题,还提供了CUDA、MATLAB等相关技术的开发指南。涉及计算机视觉、自然语言处理等热门领域,并深入介绍PyTorch、TensorFlow等主流机器学习框架和工具,旨在提高机器学习开发效率。
practical-machine-learning-with-python - 实际应用中的机器学习与深度学习指南
GithubPractical Machine Learning with PythonPython开源项目数据科学机器学习深度学习
通过结构化的三层方法和实际案例,本书帮助读者掌握机器学习和深度学习技能。内容涵盖scikit-learn、pandas、tensorflow等工具,提供数据处理、特征工程、建模和部署的详细指导,以及多个跨行业的案例研究,支持独立完成端到端的机器学习项目。
Machine-Learning-Notes - 机器学习从入门到精通的全面笔记
Github人工智能学习开源项目机器学习笔记计算机科学
Machine-Learning-Notes 是一个机器学习领域的学习资源库,提供从基础到高级的笔记。项目涵盖算法、模型和实践应用,适合不同水平的学习者。资料全面且定期更新,采用循序渐进的学习方法,有助于系统掌握机器学习知识。其独特的结构化组织使学习者能够轻松找到所需资源,从而更有效地提升技能。
openmlsys-zh - 现代机器学习系统设计与实现全面指南
GithubOpenMLSys实现经验开源项目机器学习系统设计原理
该开源项目全面介绍现代机器学习系统的设计和实现,涵盖编程接口、计算图、编译器技术、硬件加速等核心内容。同时探讨推荐系统、联邦学习、强化学习等前沿领域的系统实现。项目内容适合学生、研究人员和开发者,有助于读者深入理解机器学习系统,提升实际应用和开发能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号