Project Icon

netsaur

Deno生态系统中的轻量级高效神经网络库

Netsaur是Deno生态系统中的一款轻量级高效神经网络库。它提供简洁API用于创建和训练神经网络,支持CPU运行,GPU支持正在开发中。Netsaur无需额外依赖,适用于serverless环境,可快速构建和部署多种机器学习模型。这个库适合各层级的机器学习实践者使用,从入门到专业均可上手。

openai-deno-build - OpenAI Node API的Deno版本构建
APIDenoGithubOpenAIOpenAI Node API Libraryhttps://github.com/openai/openai-node开源项目
该项目提供了OpenAI Node API库的Deno版本构建,旨在帮助开发者在Deno环境中使用OpenAI功能。源代码和文档可在GitHub上获取,详细的安装和使用指南请参见项目主页。用户可以通过从Deno或npm进行OpenAI模块导入,简化在Deno环境中的OpenAI集成过程,提高开发效率。
corenet - 用于训练多任务深度神经网络的工具库
CoreNetGithub开源项目模型训练深度学习神经网络计算机视觉
CoreNet是一款多功能深度神经网络工具库,支持训练各种规模的标准和创新模型。它适用于基础模型、计算机视觉和自然语言处理等多个领域。该项目提供可复现的训练方案、预训练模型权重和针对Apple Silicon优化的MLX示例,有助于推动AI研究和应用的发展。
zoo - 轻量级二值化神经网络模型库
GithubLarq ZooPythonTensorFlow开源项目深度学习神经网络
Larq Zoo是一个专注于二值化神经网络(BNN)的开源模型库,提供多种预训练BNN模型。作为Larq生态系统的一部分,它与Larq和Larq Compute Engine协同工作,支持BNN的构建、训练和部署。该项目适用于Python 3.8-3.10和TensorFlow 2.4-2.12版本,通过pip可轻松安装。Larq Zoo由Plumerai公司开发,旨在推进BNN研究和应用,特别适合在移动和边缘设备上部署AI。
aquila - 高效构建神经信息检索应用的工具
Aquila DBGithubJSON MetadataLatent VectorsNeural Search Enginek-NN Retrieval开源项目
Aquila DB 是一个高效的神经搜索引擎,专为机器学习应用的数据存储和检索设计。它能够索引机器学习模型生成的潜在向量和 JSON 元数据,并进行 k-NN 检索。Aquila DB 适合数据科学家和机器学习工程师,以便快速构建神经信息检索应用,且依赖性低。支持多种编程语言和 Docker 部署,集成简便。目前处于 alpha 版本,并已在生产环境中使用。
neptune-client - 可伸缩的实验跟踪工具,简化团队基础模型训练
Githubneptune.ai实验跟踪开源项目数据处理机器学习模型训练
Neptune 提供一款高效实验跟踪平台,适用于团队基础模型训练。用户可记录大量运行数据,实时对比实验结果。其灵活日志记录、自定义仪表板、多节点支持,加速训练监控和优化。支持25+框架集成,是MLOps理想工具。
MNN - 高效轻量的深度学习框架,支持多设备推理和训练
GithubMNN开源项目推理引擎深度学习框架轻量级高性能
MNN是一个高效轻量的深度学习框架,支持设备上的推理和训练。已被阿里巴巴30多个应用集成,覆盖直播、短视频、搜索推荐等70多种场景。MNN适用于嵌入式设备,支持TensorFlow、Caffe、ONNX等多种模型格式,并优化了ARM和x64 CPU及多种GPU的计算性能。通过MNN Workbench,用户可以下载预训练模型、进行可视化训练并一键部署到设备上。
graph_nets - DeepMind的图神经网络库,支持TensorFlow和Sonnet
GithubGraph NetsSonnetTensorFlow安装开源项目演示
Graph Nets是由DeepMind开发的图神经网络库,兼容TensorFlow和Sonnet。支持Linux和Mac OS X,以及Python 2.7和3.4+。该库适用于CPU和GPU版本的TensorFlow,但需要单独安装TensorFlow。Graph Nets提供了详细的安装指南、使用示例和多个演示,包括最短路径、排序和物理预测任务。用户可以通过Colaboratory在浏览器中运行这些演示,体验图神经网络的灵活性和强大功能。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
tiny-dnn - 轻量级C++14深度学习库,适用于嵌入式系统和物联网设备
C++14Githubtiny-dnn嵌入式系统开源项目深度学习物联网设备
tiny-dnn是一个为计算资源有限的嵌入式系统和物联网设备设计的C++14深度学习库。该库无需GPU,通过TBB线程和SSE/AVX向量化实现了高效性能,在13分钟内达到了98.8%的MNIST准确率。其便携的头文件形式使其易于集成,支持多种网络层类型、激活函数、损失函数和优化算法。tiny-dnn还能导入Caffe模型,适合学习和构建神经网络应用。
neurojs - 一个基于浏览器的JavaScript深度学习框架,聚焦强化学习
GithubJavaScript框架neurojs开源项目强化学习深度Q网络深度学习
neurojs是一个浏览器内的JavaScript深度学习框架,特别专注于强化学习任务。它提供全栈神经网络支持、强化学习扩展以及网络配置的二进制导入和导出功能。用户可以通过2D自驾车等演示直观了解其功能。尽管该项目已停止维护,但仍可作为学习和实验工具,建议使用更通用的框架如TensorFlow-JS。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号