Project Icon

infini-transformer

针对无限长度上下文设计的高效Transformer模型

Infini-Transformer是一种创新的Transformer模型,专门用于处理无限长度的上下文。该模型采用压缩性记忆机制和混合深度技术,能有效处理超长序列。Infini-Transformer支持文本分类、问答和语言生成等多种任务,并集成RoPE和YaRN等先进位置编码技术。这一模型为长文本处理和大规模语言任务提供了高效解决方案。

Comprehensive-Transformer-TTS - 基于非自回归 Transformer 的 TTS
GithubPyTorchTTS开源项目持续时间建模语音合成非自回归变换器
该项目采用非自回归Transformer技术,集成多种最新状态转换模型。Comprehensive-Transformer-TTS不仅提供监督与非监督持续时间建模, 也支持多种数据集和SOTA技术,如Fastformer和Long-Short Transformer,力求在文本到语音转换领域取得领先成果。
rwkv-4-169m-pile - RNN与Transformer的高性能结合:高效文本生成
GPUGithubHuggingfaceRWKV人工神经网络开源项目文本生成模型转换脚本
RWKV项目由Bo Peng主导,结合RNN和Transformer的优势,提供强大的LLM性能,支持“无限”上下文长度、快速推理和节省显存。该模型支持并行训练,如GPT,可用于高效文本生成,并提供详细的使用和部署指南。项目中提供的多种硬件运行方案,使得用户能够轻松部署在不同环境中,享有快速且节能的文本生成体验,符合现代AI开发需求。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
streaming-llm - 突破输入长度限制的流式语言模型框架
AI对话GithubStreamingLLM开源项目无限长度输入注意力机制语言模型
StreamingLLM是一个创新框架,使大型语言模型能处理超长输入序列。它通过注意力汇聚点技术解决了长文本处理的内存和性能问题,无需额外微调。在多轮对话等流式应用中,StreamingLLM比基线方法速度提升最高22.2倍。该技术已被多个知名项目采用,为语言模型的实际应用开辟了新途径。
InfiniteBench - 长文本语言模型评测基准 挑战10万词极限
GithubInfiniteBench人工智能基准测试开源项目语言模型长文本评估
InfiniteBench是一个专门评测语言模型超长文本处理能力的基准工具。它设计了12个涵盖真实和合成场景的任务,用于测试模型在10万词以上上下文中的理解和推理能力。该基准不仅有助于推动语言模型技术进步,还为改进LLM应用提供了重要参考。InfiniteBench的多样性和专业性使其成为评估长文本处理能力的有效工具。
1 - 开源自然语言处理工具库提升文本处理效率
AI模型GithubHuggingfacetransformers开源项目机器学习模型深度学习自然语言处理
transformers是一个开源自然语言处理工具包,旨在通过简化模型训练和应用,提升机器学习项目的效率。该库提供丰富功能和预训练模型,便于执行各种文本分析和生成任务。
simple-hierarchical-transformer - 分层Transformer模型探索多层次预测编码
GithubTransformer开源项目注意力机制深度学习神经网络自然语言处理
这个项目提出了一种在GPT模型中实现多层次预测编码的方法。它通过在Transformer中引入多层结构,结合局部注意力和全局信息传递。实验结果显示,该方法在维持性能的同时提升了效率。项目允许自定义层次结构、维度和注意力窗口大小,为研究人员提供了探索分层Transformer的实验工具。项目代码支持灵活配置,包括调整层次数量、模型维度和注意力窗口大小。这种设计使研究人员能够方便地进行不同参数的对比实验,有助于深入理解分层Transformer的性能特点。
landmark-attention - 突破性长序列处理技术的高效注意力机制
GithubLLaMALandmark AttentionTransformer开源项目深度学习语言模型
Landmark Attention项目提供了一种创新注意力机制的实现,可处理无限长度的上下文。该项目包含语言建模基准测试和LLaMA模型微调代码,以及与Flash Attention结合的Triton实现。通过在输入中添加特殊landmark标记,实现了对超长序列的随机访问,优化了Transformer模型的长文本处理能力,同时显著降低了内存使用并提高了性能。
TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
informer-tourism-monthly - Informer模型优化长序列时间序列预测
GithubHuggingfaceInformer开源项目时间复杂度概率注意力机制模型稀疏Transformer长序列时间序列预测
Informer通过ProbSparse自注意力机制和生成式解码器在长序列时间序列预测中优化了计算和内存需求,达到O(L logL)的复杂度和内存使用。模型提升了依赖对齐能力,能够高效处理长输入序列并显著提高预测速度,在多个大数据集上性能优异,为长序列预测问题提供了解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号