Project Icon

torchquad

基于GPU加速的开源数值积分框架

torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。

docker-pytorch - PyTorch开发环境的Docker镜像
CUDADockerGPU加速GithubPyTorch开源项目深度学习
docker-pytorch项目提供预配置的Docker镜像,整合Ubuntu、PyTorch和可选的CUDA。该镜像支持GPU加速,便于搭建深度学习环境。用户可运行PyTorch脚本和图形化应用,也可自定义镜像。这个项目为PyTorch开发者提供了便捷的环境配置方案。
jaxopt - JAX驱动的高性能优化器库
GithubJAXopt优化器可微分开源项目批处理硬件加速
JAXopt是基于JAX的优化器库,提供硬件加速、批处理和可微分的优化算法。支持GPU和TPU,可自动向量化多个优化问题实例,并支持优化解的微分。目前正与Optax合并,处于维护模式。适用于机器学习和科学计算领域的优化任务。
accelerate - 简化多设备PyTorch训练的框架
AccelerateGithubPyTorch分布式训练开源项目混合精度设备管理
Accelerate是一个轻量级PyTorch训练框架,允许在CPU、GPU、TPU等多种设备上运行原生PyTorch脚本。它自动处理设备分配和混合精度训练,简化了分布式训练流程。研究人员和开发者可专注于模型开发,无需关注底层实现细节,从而加速AI模型的训练和部署。
pytorch-fid - 生成对抗网络图像质量评估工具
FIDFréchet Inception DistanceGANsGithubPyTorchTensorflow开源项目
pytorch-fid是一款用于计算生成对抗网络(GAN)样本质量的Fréchet Inception Distance(FID)分数的工具。该工具将官方的Tensorflow实现移植到PyTorch,确保相似的准确性和方便性。用户可以自由选择特征层,适应不同的数据集,还支持GPU加速和保存原始数据集的统计信息,便于进行多模型比较,适合研究和开发高质量图像生成模型。
variational-autoencoder - 变分自编码器参考实现,兼容TensorFlow和PyTorch
GithubMNISTPyTorchVariational Autoencoderjaxtensorflow开源项目
该项目提供了变分自编码器的参考实现,支持TensorFlow和PyTorch。项目中包含了逆自回归流变分家族的示例,通过变分推断对二值MNIST手写数字图像进行拟合。通过重要性采样估计边际似然,展示了高效的训练和验证结果。优化后的测试集边际对数似然达到了-95.33 nats。此外,该项目还提供了JAX实现,能够实现3倍于PyTorch的加速效果。
taichi.js - JavaScript GPU加速框架 实现大规模并行计算
GPU计算GithubJavascript框架WebGPUtaichi.js并行计算开源项目
taichi.js是一个为JavaScript开发的现代GPU计算框架。它将JavaScript函数转换为WebGPU计算着色器,实现大规模并行化。作为Python库Taichi的JavaScript版本,taichi.js具备交互式代码编辑器功能,支持代码的编写、编译和运行。该框架适用于分形图形生成等复杂计算任务,通过WebGPU技术提供高效的GPU计算能力。taichi.js为Web开发者提供了便捷的GPU加速计算解决方案。
intel-extension-for-pytorch - 通过最新优化提升Intel硬件的深度学习性能
AIGPUsGithubIntel® Extension for PyTorchLLMs优化开源项目
Intel® Extension for PyTorch* 提供优化功能,利用Intel® AVX-512 VNNI、AMX以及XMX AI引擎,提升Intel CPU和GPU上的深度学习性能。该扩展优化了大规模语言模型(LLMs),如LLAMA、GPT-J、GPT-NEOX等,支持多种量化方法(如FP32、BF16、INT8、INT4)。此外,自2.3.0版本起,还引入了模块级优化API,为定制模型优化提供了更多选项。
Quantus - 神经网络解释的定量评估工具箱
GithubQuantus工具包开源项目神经网络解释评估
Quantus提供超过30种指标,支持图像、时间序列、表格数据和自然语言处理等数据类型,兼容PyTorch和TensorFlow模型。作为一个易用的定量评估工具箱,Quantus涵盖了包括EfficientMPRT和SmoothMPRT在内的新指标,帮助研究人员在无真实数据情况下进行全面评估。欲了解更多详情,请参阅文档及最新发布的论文。
Integrals.jl - Julia数值积分统一接口库
GithubIntegrals.jlJuliaSciML多维积分开源项目数值积分
Integrals.jl是一个Julia数值积分统一接口库。它整合了多种积分包,支持求积法和蒙特卡罗法,标准化了参数设置。该库可用于一维和多维积分,支持并行计算,便于切换不同积分方法。Integrals.jl简化了数值积分的实现,有利于性能比较和库开发。
bitsandbytes - 高效CUDA优化库 支持多位量化和矩阵运算
CUDAGithubbitsandbytes优化器开源项目硬件后端量化
bitsandbytes是一个轻量级Python库,为CUDA自定义函数提供封装。该库主要提供8位优化器、矩阵乘法(LLM.int8())以及8位和4位量化功能。通过bitsandbytes.nn模块实现多位线性层,bitsandbytes.optim模块提供优化器。目前正在拓展对更多硬件后端的支持,包括Intel CPU+GPU、AMD GPU和Apple Silicon,Windows平台的支持也在开发中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号