Project Icon

mask2former-swin-tiny-coco-instance

Mask2Former模型:统一处理实例、语义和全景图像分割

Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。

maskformer-swin-base-ade - 语义分割的新方法——MaskFormer的应用
GithubHugging FaceHuggingfaceMaskFormer图像分割开源项目模型深度学习语义分割
MaskFormer采用Swin骨干网络与ADE20k数据集,在语义分割中表现出色。该模型通过预测掩模和标签统一地解决实例、语义及全景分割任务,可通过Hugging Face平台上的预训练模型来深入研究其应用。
maskformer-swin-large-ade - MaskFormer模型提升语义分割效率与精确度的创新方案
ADE20kGithubHuggingfaceMaskFormerpanoptic分割实例分割开源项目模型语义分割
MaskFormer通过ADE20k数据集训练,利用Swin结构提升语义、实例和全景分割性能。该模型适用于多种分割任务,采用统一的掩码及标签预测方式处理三类分割,促进图像细分任务的研究和应用,如建筑物和场景的精确分割。项目由Hugging Face团队支持,可在模型中心找到其他版本进行适用性调优。
MP-Former - 基于mask-piloted机制的先进图像分割模型
CVPR 2023GithubMP-FormerMask2FormerTransformer图像分割开源项目
MP-Former是一种新型图像分割transformer模型,采用mask-piloted机制改进分割效果。项目包含训练和评估代码,适用于实例分割和全景分割任务。基于Mask2Former架构开发,在COCO数据集上展现出良好性能。项目提供了复现论文实验的脚本,为计算机视觉研究提供参考实现。MP-Former在CVPR 2023上发表,提供了no noise和all-layer MP训练设置,12轮训练后在实例分割任务上达到40.15 AP。项目代码开源,安装过程与Mask2Former相同,便于研究者快速上手和进行进一步探索。
oneformer_ade20k_swin_tiny - 通过单一模型实现多任务图像分割的统一框架
GithubHuggingfaceOneFormer图像分割实例分割开源项目模型深度学习语义分割
OneFormer通过单一架构实现语义、实例和全景分割的统一处理。基于ADE20k数据集训练并采用Swin主干网络,这个紧凑型模型仅需一次训练即可完成多种图像分割任务。其独特的任务令牌机制实现了训练引导和推理动态化,为图像分割领域提供了高效的解决方案。
oneformer_coco_swin_large - 单一模型实现多任务图像分割
GithubHuggingfaceOneFormer图像分割多任务模型实例分割开源项目模型语义分割
OneFormer COCO Swin Large是一款基于COCO数据集训练的多任务图像分割模型。它采用单一架构,通过一次训练就能在语义、实例和全景分割任务中表现出色。模型利用任务令牌技术实现训练引导和动态推理,提供了高效的图像分割方案。此外,它还提供了便捷的API接口,适合各类研究和开发需求。
oneformer_ade20k_swin_large - OneFormer 多任务通用图像分割模型
GithubHuggingfaceOneFormer全景分割图像分割实例分割开源项目模型语义分割
OneFormer是一个基于ADE20k数据集和Swin大型骨干网络训练的通用图像分割框架。它通过单一模型和单次训练,实现了语义、实例和全景分割多任务处理,性能超越现有专用模型。该模型采用任务令牌技术,实现了训练时的任务引导和推理时的任务动态适应。OneFormer为图像分割领域带来了新的解决方案,可应用于多种图像分割任务。
oneformer_ade20k_dinat_large - OneFormer单一模型在多任务图像分割中实现卓越表现
ADE20kGithubHuggingfaceOneFormer图像分割实例分割开源项目模型语义分割
OneFormer模型借助单一架构和模块在ADE20k数据集上进行训练,适用于语义、实例和全景分割。通过使用任务令牌,该模型能够动态调整以满足不同任务要求,不仅显著优化了分割效果,还具备替代专门化模型的潜力。
mit-b2 - 高效语义分割的简单Transformer设计
GithubHuggingfaceSegFormerTransformer图像分类开源项目机器学习模型语义分割
SegFormer b2是一个在ImageNet-1k上预训练的编码器模型,采用分层Transformer结构。该模型专为语义分割任务设计,结合了简单高效的架构和出色的性能。虽然此版本仅包含预训练的编码器部分,但它为图像分类和语义分割的微调提供了坚实基础。SegFormer的创新设计使其在多个计算机视觉任务中展现出强大潜力。
segformer-b2-finetuned-ade-512-512 - SegFormer模型实现高效语义分割的新方法
GithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型视觉
SegFormer模型在ADE20K数据集上微调,支持512x512分辨率图像的语义分割,由层次Transformer编码器和轻量级MLP解码头构成,适用于ADE20K和Cityscapes等基准。模型先在ImageNet-1k上预训练,再在下游任务上微调,适合多种分割任务。
mit-b4 - 使用SegFormer预训练模型提升语义分割效率
GithubHugging FaceHuggingfaceImageNetSegFormerTransformer开源项目模型语义分割
此项目提供SegFormer的b4-sized预训练模型,具有分层Transformer和轻量级MLP解码头,在ADE20K和Cityscapes等基准上展现出色性能。经过ImageNet-1k预训练的SegFormer可用于下游任务微调,满足多种应用需求。用户可在[模型库](https://huggingface.co/models?other=segformer)中根据任务需求选择合适版本,优化图像分割效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号