Project Icon

mask2former-swin-tiny-coco-instance

Mask2Former模型:统一处理实例、语义和全景图像分割

Mask2Former是一个先进的图像分割模型,基于Swin骨干网络在COCO数据集上训练。它采用统一的方法处理实例、语义和全景分割任务,通过预测掩码和标签来完成分割。该模型引入多尺度可变形注意力Transformer和掩码注意力Transformer解码器,在性能和效率上超越了先前的MaskFormer模型。Mask2Former提供了简单的使用方法和代码示例,方便研究人员和开发者在图像分割领域进行应用和研究。

segformer-b1-finetuned-cityscapes-1024-1024 - SegFormer模型在语义分割中的高效应用
CityscapesGithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型
SegFormer模型在CityScapes数据集上进行了微调,使用Transformer结构和轻量级MLP解码头实现高效的图像语义分割。适用于图像分割领域的研究者和开发者,可通过Python代码轻松使用。该模型支持高分辨率图像处理,展示了Transformer的潜力。
segformer-b3-finetuned-ade-512-512 - 改进版SegFormer模型,提升语义分割精度与效率
ADE20kGithubHuggingfaceSegFormerTransformers图像分割开源项目模型语义分割
SegFormer在ADE20k数据集上微调后,在高分辨率下展现出卓越的语义分割能力。它结合了层次Transformer编码器和轻便MLP解码器,通过ImageNet-1k预训练和后续微调,适合多样化的图像分割应用,提供多种版本以匹配不同需求。
segformer-b4-finetuned-ade-512-512 - 512x512分辨率下SegFormer的高效Transformer语义分割实现
ADE20kGithubHuggingfaceSegFormerTransformer图像处理开源项目模型语义分割
本项目展示了SegFormer模型如何应用在ADE20k数据集上,以512x512分辨率进行微调。该模型采用分层Transformer编码器与轻量级全MLP解码头的设计,并在ImageNet-1k预训练后用于语义分割。其适用于多个基准测试如ADE20K和Cityscapes,为视觉分割提供强大而灵活的工具。用户可以使用该模型进行图像的语义分割,或选择适合特定任务的微调版本。
segformer-b1-finetuned-ade-512-512 - SegFormer-b1在ADE20k数据集上微调的语义分割模型
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b1是一种针对语义分割任务的深度学习模型,在ADE20k数据集上进行了微调。该模型结合了层次化Transformer编码器和轻量级MLP解码头,在512x512分辨率下展现出优秀的分割效果。模型经过ImageNet-1k预训练后,通过添加解码头并在特定数据集上微调,可直接应用于语义分割或作为其他相关任务的基础。
mit-b5 - SegFormer层次化Transformer编码器预训练模型
GithubHuggingfaceSegFormerTransformer图像分类开源项目模型语义分割预训练模型
SegFormer (b5-sized) encoder是一个在ImageNet-1k上预训练的语义分割模型。它采用层次化Transformer编码器结构,为下游任务微调提供基础。该模型在ADE20K和Cityscapes等语义分割基准测试中表现优异,同时也适用于图像分类等相关任务。用户可通过简洁的Python代码轻松调用此模型进行实验和应用开发。
segformer-b0-finetuned-ade-512-512 - SegFormer-b0模型实现高效语义分割
GithubHuggingfaceSegFormer图像处理开源项目模型深度学习计算机视觉语义分割
SegFormer-b0是一个在ADE20k数据集上微调的语义分割模型,采用512x512分辨率。其特点是结合了层次化Transformer编码器和轻量级MLP解码头,在语义分割任务中表现优异。模型经过ImageNet-1k预训练后,添加解码头并在特定数据集上微调。研究者可直接应用于语义分割,或根据需求选择针对性微调的版本。
segformer-b5-finetuned-ade-640-640 - SegFormer-b5模型用于ADE20k数据集的语义分割
GithubHuggingfaceSegFormerTransformer图像处理开源项目模型深度学习语义分割
SegFormer-b5是一个针对ADE20k数据集640x640分辨率微调的语义分割模型。该模型采用层次化Transformer编码器和轻量级MLP解码头,在ADE20K等基准测试中表现优异。模型在ImageNet-1k预训练后,添加解码头并在目标数据集上微调,可应用于多种语义分割任务。
CrossFormer - 融合跨尺度注意力的高效视觉Transformer
CrossFormer++Github图像分类开源项目目标检测视觉Transformer跨尺度注意力
CrossFormer++是一种创新的视觉Transformer模型,通过跨尺度注意力机制解决了不同尺度对象特征间建立关联的问题。该模型引入跨尺度嵌入层和长短距离注意力等设计,并采用渐进式分组策略和激活冷却层来平衡性能与计算效率。在图像分类、目标检测和语义分割等视觉任务中表现优异,尤其在密集预测任务中效果显著。CrossFormer++为计算机视觉领域提供了一种灵活高效的新型架构。
metaformer - 一系列视觉基线模型
CAFormerConvFormerGithubIdentityFormerMetaFormerRandFormer开源项目
MetaFormer项目推出多款视觉基线模型,包括IdentityFormer、RandFormer、ConvFormer和CAFormer。这些模型在ImageNet-1K数据集上表现出色,根据不同的token mixer架构,如身份映射、全局随机混合、可分离深度卷积和自注意机制,在224x224分辨率下的Top-1准确率均超过80%。特别是CAFormer,在无外部数据或蒸馏的条件下,达到85.5%的准确率记录。这些模型已集成到timm库中,方便应用和扩展。
poolformer - 视觉任务中MetaFormer架构的应用及其效能
CVPR 2022GithubMetaFormerPoolFormerTransformer图像分类开源项目
该项目展示了MetaFormer架构在视觉任务中的应用,特别通过简单的池化操作实现token混合。研究证实,基于这种方法的PoolFormer模型在ImageNet-1K验证集上表现优于DeiT和ResMLP。此外,后续工作介绍了IdentityFormer、RandFormer等MetaFormer基线模型。本项目证明了Transformer模型的竞争力主要来源于其通用架构MetaFormer,而非特定的token混合器。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号