Project Icon

Ego4d

大规模多模态视频数据集与基准测试的最新发展

Ego-Exo4D和Ego4D是全球最大的第一人称和多视角视频机器学习数据集,含有时间同步的视频和丰富的注释。Ego4D数据集包括超过3700小时的注释视频,Ego-Exo4D的V2版本新增了1286.30小时的视频内容,提供数据下载、特征提取和研究的CLI工具和API。详细信息请查阅官方网站和文档。

dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
Diffusion4D - 视频扩散模型实现快速生成时空一致4D内容
3D转4D4D生成Diffusion4DGithub大规模动态3D数据集开源项目视频扩散模型
Diffusion4D是一个基于视频扩散模型的开源项目,专注于生成时空一致的4D内容。该项目整合了大规模动态3D数据集、先进渲染技术和扩散模型,实现了图像、文本和3D模型到4D内容的转换。项目提供了数据集准备指南和渲染脚本,为计算机视觉和图形学研究提供了有价值的资源。Diffusion4D在4D内容生成领域展现了新的可能性,对相关技术发展具有推动作用。
4DGen - 基于视频的动态3D内容生成,实现空间-时间一致性
4DGen4D内容生成Github开源项目空间时间一致性视频到4D生成高斯散射
4DGen是一个开源项目,专注于基于视频的4D内容生成。该项目支持视频、图像和文本到4D的转换,通过融合多种技术实现空间-时间一致性。4DGen提供了创建动态3D内容的工具,并开放了代码和数据集,为相关研究和开发提供资源。
EmbodiedScan - 全面多模态3D感知套件,提高具身AI的理解能力
3D感知EmbodiedScanGithubMMScan多模态开源项目深度学习
EmbodiedScan及其系列如MMScan是专为多模态3D感知设计的开放数据集与基准,用于深入理解第一人称3D场景。包含超过5000次扫描、100万RGB-D视图、语言提示和160k 3D定向框。基于此数据库的Embodied Perceptron展示了在3D感知和语言定位中的优秀表现,适用于计算机视觉和机器人领域。通过我们的演示和基准测试,了解详细信息和应用案例。
Consistent4D - 单目视频到360度动态物体的生成
4D重建Github动态物体生成单目视频开源项目时空一致性神经辐射场
Consistent4D是一种创新方法,能从未校准的单目视频生成动态物体的360度视图。该方法将360度动态物体重建转化为4D生成问题,利用物体级3D感知图像扩散模型监督动态神经辐射场的训练。Consistent4D引入级联DyNeRF和插值驱动的一致性损失,无需繁琐的多视图数据收集和相机校准。实验表明,该方法在4D动态物体生成和文本到3D生成任务中展现出优异性能。
DriveDreamer4D - 4D驾驶场景模拟的新突破
4D驾驶场景表示AI工具DriveDreamer4D交通约束自主驾驶视频生成模型
DriveDreamer4D利用世界模型先验,提升4D驾驶场景表示。通过闭环仿真,能将实况驾驶数据转换为新的轨迹视频,并确保视频内容的时空一致性。实验验证了其在新轨迹视频生成方面的优越性,尤其在时空连贯性上表现突出,为自主驾驶系统的研究和开发提供了有力支持。
MiraData - 长时视频数据集助力AI视频生成研究
GithubMiraData开源项目结构化标注视频数据集视频生成长视频
MiraData是一个为长视频生成任务设计的大规模数据集。其特点包括平均72秒的视频长度和详细的结构化字幕。数据集提供330K、93K、42K和9K四个版本,每个视频配有六类字幕:主要对象、背景、风格、相机运动、简短摘要和详细描述。这些特性使MiraData成为改进长序列视频处理和镜头转换建模的重要资源。
EFG - 高效灵活的深度学习框架支持多项计算机视觉任务
3D目标检测EFGGithub开源项目深度学习框架目标跟踪计算机视觉
EFG是一个高效、灵活且通用的深度学习框架,采用最小化设计。该框架支持2D和3D目标检测、全景分割等多种计算机视觉任务,并在Waymo和nuScenes等数据集上展现优异性能。EFG集成了多个最新研究成果,如TrajectoryFormer和ConQueR,为3D目标检测和跟踪领域提供创新解决方案。研究人员可利用EFG的项目模板探索各种研究主题。
shape-of-motion - 从单个视频实现4D场景重建的前沿技术
4D重建GithubShape of Motion单视频重建开源项目深度学习计算机视觉
Shape of Motion项目展示了一种新型4D重建方法,可从单个视频重建动态3D场景。该项目结合深度学习和计算机视觉技术,实现运动物体的精确重建。项目包含完整工作流程,涵盖预处理、模型训练和性能评估。研究团队公开了源代码和数据集,为计算机视觉领域提供了有价值的研究资源。这一技术可能在计算机图形学、增强现实等方面带来应用突破。
bdd100k - 大规模驾驶视频数据集赋能自动驾驶多任务学习
BDD100KGithub多任务学习开源项目数据集自动驾驶计算机视觉
BDD100K是一个专为异构多任务学习设计的多样化驾驶数据集,包含10万个视频和10个评估任务。这些数据涵盖了超过1000小时的驾驶经验,体现了地理、环境和天气的多样性。BDD100K支持图像标记、车道检测、可行驶区域分割等多项任务,为自动驾驶技术研究提供了丰富的数据资源,有助于评估图像识别算法在实际驾驶场景中的表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号