Project Icon

xformers

Transformer 研究加速工具

xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。

v3_1_pt_ep1_sft_5_based_on_llama3_1_70b_final_data_20241026 - 揭示新型Transformer模型的实际应用与研究进展
GithubHuggingfacetransformers偏见开源项目模型模型卡环境影响评估
该文档介绍了新型Transformers模型的功能、应用领域与局限性,包含使用指南、训练数据概述、程序步骤、评估方法及其环境影响评估,为读者提供全面的信息参考。
GroupMixFormer - 视觉Transformer的群组混合注意力革新
GithubGroupMixFormer图像分类开源项目自注意力机制视觉Transformer计算机视觉
GroupMixFormer是一种创新的视觉Transformer模型,引入群组混合注意力(GMA)机制来增强传统自注意力。GMA可同时捕捉不同尺度的token和群组相关性,显著提升模型表征能力。在多项计算机视觉任务中,GroupMixFormer以较少参数实现了领先性能。其中GroupMixFormer-L在ImageNet-1K分类上达到86.2% Top-1准确率,GroupMixFormer-B在ADE20K分割上获得51.2% mIoU,展现出强大潜力。
poolformer - 视觉任务中MetaFormer架构的应用及其效能
CVPR 2022GithubMetaFormerPoolFormerTransformer图像分类开源项目
该项目展示了MetaFormer架构在视觉任务中的应用,特别通过简单的池化操作实现token混合。研究证实,基于这种方法的PoolFormer模型在ImageNet-1K验证集上表现优于DeiT和ResMLP。此外,后续工作介绍了IdentityFormer、RandFormer等MetaFormer基线模型。本项目证明了Transformer模型的竞争力主要来源于其通用架构MetaFormer,而非特定的token混合器。
TransformerLens - 深入解析生成式语言模型的机制解释工具
GithubTransformerLens开源工具开源项目机械可解释性神经网络解析语言模型
TransformerLens是一个开源库,专门用于解释生成式语言模型的内部机制。它支持加载50多种开源语言模型,让研究人员能够访问模型的内部激活。用户可以缓存激活数据,并在模型运行时进行编辑、删除或替换。这个工具为深入理解复杂语言模型的工作原理提供了有力支持。
mformer-care - 基于Transformers的多模态深度学习模型
GithubHuggingfacetransformers开源开源项目机器学习模型深度学习自然语言处理
mformer-care是一个基于Hugging Face Transformers库开发的开源项目,采用MIT许可证,支持英语语言处理。该项目利用Transformer架构实现多模态数据的处理与分析。
transformer-explainer - 帮助理解Transformer模型与GPT-2预测的实时交互式工具
GPT-2Georgia Institute of TechnologyGithubMIT许可Transformer Explainer交互式可视化工具开源项目
Transformer Explainer 是一款互动可视化工具,帮助理解基于Transformer的模型如GPT的工作原理。该工具在浏览器中运行实时的GPT-2模型,允许实验自己的文本并实时观察Transformer内部组件的协同预测过程。适合技术人员与学习者深入探索Transformer模型机制与应用。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
How-to-use-Transformers - 介绍Transformers库的自然语言处理应用教程
BERTGithubHugging FacePython库Transformers开源项目自然语言处理
该项目提供了由Hugging Face开发的Transformers库的快速入门教程,支持加载大部分预训练语言模型。教程涵盖自然语言处理背景知识、Transformers基础和实战案例,包括pipelines、模型与分词器使用、微调预训练模型及序列标注任务等。示例代码展示了句子对分类、命名实体识别、文本摘要等任务的实现,适合机器学习和NLP开发者参考。
spacy-transformers - 在 spaCy 中使用 BERT、XLNet 和 GPT-2 等预训练转换器
BERTGPT-2GithubXLNetspaCytransformers开源项目
spacy-transformers通过Hugging Face的transformers实现预训练模型如BERT、XLNet和GPT-2的集成,提升spaCy的功能。支持多任务学习、转换器输出自动对齐等,兼容Python 3.6以上版本,需要PyTorch v1.5+和spaCy v3.0+。
flatformer - 优化点云变换器性能
3D目标检测FlatFormerGithubWaymo数据集开源项目点云transformer自注意力机制
FlatFormer是一种新型点云变换器算法,采用扁平化窗口注意力机制提高处理效率。在Waymo开放数据集上,它实现了领先的精度,并比现有方法快4.6倍。FlatFormer首次在边缘GPU上达到实时性能,为自动驾驶等对延迟敏感的应用开辟新途径。该算法通过平衡空间邻近性和计算规律性,减少了结构化和填充开销。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号