Project Icon

timeshap

针对循环模型的时序数据解释框架

TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。

neuralforecast - 先进的神经网络时间序列预测模型库
GithubNeuralForecast开源项目时间序列机器学习深度学习预测模型
NeuralForecast 提供 30 多种先进的神经网络模型,提升时间序列预测的准确性和效率。支持外生变量和静态协变量,并具备自动超参数优化和可解释性方法。通过 sklearn 语法 `.fit` 和 `.predict` 实现快速训练和预测,包含 NBEATSx 和 NHITS 等最新实现,并与 Ray 和 Optuna 集成,适用于多种应用场景。
mlforecast - 高性能可扩展的机器学习时间序列预测框架
GithubMLForecast分布式训练开源项目时间序列预测机器学习特征工程
mlforecast是一个基于机器学习模型的时间序列预测框架,具有高效的特征工程实现和良好的可扩展性。该框架支持pandas、polars、spark等多种数据格式,兼容sklearn API,能够处理海量数据。除了支持概率预测和外生变量,mlforecast还提供分布式训练功能,适用于大规模生产环境的时间序列预测任务。框架采用熟悉的fit和predict接口,便于快速上手和集成到现有项目中。
Transformers_And_LLM_Are_What_You_Dont_Need - 分析深度学习模型在时间序列预测中的表现与局限
GithubMambaTransformers开源项目时间序列预测深度学习线性模型
本项目汇集大量研究论文和文章,深入分析变压器和大语言模型在时间序列预测中的表现及局限性。探讨这些深度学习模型处理时间序列数据的挑战,并介绍更适合的替代方法。为时间序列预测领域的研究和应用提供全面的参考资源。
ETSformer-pytorch - 基于PyTorch的先进时间序列Transformer模型
ETSformerGithubPytorchTransformer开源项目指数平滑时间序列预测
ETSformer-pytorch是一个开源的时间序列分析工具,基于PyTorch实现了先进的Transformer模型。该项目集成了多头指数平滑注意力机制和频率选择功能,适用于时间序列预测和分类任务。ETSformer-pytorch提供简单的安装和使用方法,支持灵活的模型配置,并包含专门的分类包装器。这一工具为研究人员和开发者提供了处理复杂时间序列数据的有效解决方案。
OmniXAI - 多功能AI决策解释Python库
GithubOmniXAI可解释人工智能开源项目数据分析机器学习模型解释
OmniXAI是一个开源Python库,专注于可解释人工智能(XAI)。它支持多种数据类型和机器学习模型,提供丰富的解释方法,如特征归因和反事实解释。通过统一接口和可视化仪表板,OmniXAI简化了AI决策解释过程,适用于机器学习流程的各个阶段,为数据科学家和ML从业者提供深入洞察。
tsflex - 高效灵活的时间序列处理和特征提取Python工具包
GithubPython库tsflex开源项目数据分析时间序列处理特征提取
tsflex是一个Python工具包,用于时间序列处理和特征提取。它支持多变量、多模态时间序列数据,并可与多种处理和特征提取库集成。tsflex采用基于视图的操作,实现低内存占用和快速执行。该工具包提供直观的API,对序列数据几乎没有假设,能处理异步数据。此外,tsflex还具备特征选择、执行时间记录和序列化等高级功能。
test-time-adaptation - 多场景计算机视觉模型在线测试时适应框架
GithubPyTorch在线测试时适应开源项目模型微调深度学习计算机视觉
该项目是一个基于PyTorch的开源在线测试时适应框架。支持CIFAR、ImageNet等多个数据集变体和预训练模型,实现了TENT、MEMO、EATA等多种测试时适应方法。框架采用模块化设计,易于扩展新方法,并提供混合精度训练功能。此外,项目还包含全面的基准测试结果和图像分割任务实验。
awesome-time-series - 时间序列分析资源及工具集锦
GithubPython可视化开源项目数据分析时间序列机器学习
该项目汇集了丰富的时间序列和序列数据处理资源。涵盖Python、R、Java等多种语言的工具库,内容包括特征工程、分割、增强和可视化等方面。同时收录了相关数据库、标注工具、学术论文、开源模型、书籍和课程,为时间序列分析提供全面参考。
lit - 可视化机器学习模型解释工具
GithubLIT交互式可视化开源项目机器学习模型解释
LIT是一款开源的机器学习模型解释工具,支持文本、图像和表格数据分析。它提供可视化界面,包括本地解释、聚合分析和反事实生成等功能,助力用户深入理解模型行为。LIT可作为独立服务器运行,也兼容Colab、Jupyter等环境,支持多种模型类型和主流深度学习框架。通过LIT,研究人员可更好地分析模型性能、预测归因和行为一致性。
scalecast - 功能全面的时间序列预测Python库
GithubPython库Scalecast开源项目数据可视化时间序列预测机器学习
Scalecast是一个功能全面的时间序列预测Python库。它提供统一的机器学习建模接口,支持LSTM、ARIMA等多种模型类型。该库集成了自动特征选择、超参数调优、模型堆叠等功能,并提供便捷的数据可视化工具。Scalecast致力于简化复杂的时间序列预测任务,适用于不同规模的预测项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号