Project Icon

timeshap

针对循环模型的时序数据解释框架

TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。

automated-interpretability - 语言模型神经元行为的自动化解释工具
GPT-2Github开源项目数据集模型权重神经元行为自动解释性
automated-interpretability项目开发了一套自动化工具,用于生成、模拟和评分语言模型中神经元行为的解释。该项目提供了代码库、神经元激活查看器和GPT-2 XL神经元的公开数据集。这些资源旨在帮助研究人员和开发者深入理解大型语言模型的内部机制。
U-Time - 深度学习模型实现高频睡眠自动分期
GithubU-SleepU-Time开源项目时间序列分割深度学习睡眠分期
U-Sleep是基于U-Time时间序列分割模型开发的深度学习系统,专门用于高频睡眠自动分期。它能适应多种临床人群和多导睡眠记录协议,提供准确稳健的分期结果。该项目包含模型的完整实现,支持训练和评估,并提供命令行接口便于操作使用。
Nonstationary_Transformers - 创新时间序列预测方法应对非平稳数据
GithubNon-stationary Transformers开源项目时间序列预测模型架构注意力机制深度学习
Non-stationary Transformers项目开发了新型时间序列预测方法,采用系列平稳化和去平稳注意力机制处理非平稳数据。该方法在多个基准数据集上展现出优异性能,并能有效提升现有注意力模型的预测效果。项目开源了完整代码和实验脚本,为时间序列预测研究和应用提供了重要参考。
tsfeatures - 高效提取时间序列特征的R工具包
GithubR包tsfeatures开源项目数据分析时间序列特征提取
tsfeatures是一个R包,专门用于从时间序列数据中提取多种特征。它能分析趋势、季节性、线性度等,并处理不同频率和周期的时间序列。该包输出易于理解的特征指标,适用于时间序列分析、预测和分类等领域。tsfeatures可通过CRAN安装,支持多种时间序列特征提取方法,使用简单灵活。
VTimeLLM - 创新视频大语言模型实现精准时刻理解
GithubVTimeLLM多阶段训练大语言模型开源项目时间边界感知视频理解
VTimeLLM是一种先进的视频大语言模型,专注于精细化视频时刻理解和推理。该模型采用边界感知三阶段训练策略,包括图像-文本特征对齐、多事件视频时间边界识别和高质量视频指令微调。这种方法显著提升了模型的时间理解能力,使其在多项视频理解任务中表现优异。
LTSF-Linear - 线性模型在时间序列预测中的应用
AAAI 2023DLinearGithubLTSF-LinearTransformers开源项目时间序列预测
LTSF-Linear是一个高效的线性模型家族,包括Linear、NLinear和DLinear,专为时间序列预测设计。该模型支持单变量和多变量长时间预测,具有高效率、可解释性和易用性,显著优于Transformer模型。
pytorch-frame - 模块化深度学习框架用于异构表格数据
GithubPyTorch Frame开源项目模块化框架深度学习神经网络表格数据
PyTorch Frame是一个为异构表格数据设计的深度学习框架,支持数值、分类、时间、文本和图像等多种列类型。它采用模块化架构,实现了先进的深度表格模型,并可与大型语言模型集成。该框架提供了便捷的mini-batch加载器、基准数据集和自定义数据接口,简化了表格数据的深度学习研究过程,适用于各层次研究人员。框架内置多个预实现的深度表格模型,如Trompt、FTTransformer和TabNet等,并提供与XGBoost等GBDT模型的性能对比基准。PyTorch Frame无缝集成于PyTorch生态系统,便于与其他PyTorch库协同使用,为端到端的深度学习研究提供了便利。
iTransformer - 用于多变量时间序列预测的iTransformer模型
GithubTransformer模型iTransformer多变量预测开源项目时间序列预测高效注意力机制
iTransformer是一种用于多变量时间序列预测的开源模型,无需修改任何Transformer模块。它在处理大规模数据时表现出色,具备显著的性能提升和强大的泛化能力。iTransformer已在多种基准测试中表现优异,支持静态协变量和概率发射头。用户可通过pip安装,并使用项目提供的详细训练和评估脚本。更多信息请参阅官方论文。
streamlit_prophet - 交互式时间序列预测工具助力数据分析
GithubProphetStreamlit可视化开源项目时间序列预测模型训练
streamlit_prophet是一款开源的时间序列预测工具,集成了Streamlit的交互功能和Prophet的预测算法。它提供了简洁的用户界面,支持数据上传、预处理、模型调参、评估和预测等功能。兼容Python 3.7-3.9版本,streamlit_prophet通过可视化界面简化了时间序列预测过程。这个工具适用于数据分析师和业务人员,可快速部署并用于各类预测分析任务。
SHARK - 跨平台机器学习分发解决方案
GithubSHARKStable DiffusionTurbineVulkantorch-mlir开源项目
SHARK是一个高性能的机器学习分发平台,支持Windows、Linux和macOS,兼容AMD和Nvidia硬件,优化图像和文本生成的效率和稳定性。利用最新的Turbine技术,促进更快速的模型部署和稳定性能体验。详细指南帮助初学者和开发者快速上手,支持稳定扩散、BERT、GPT2等热门模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号