Project Icon

timeshap

针对循环模型的时序数据解释框架

TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。

hctsa - MATLAB时间序列分析与特征提取工具包
Githubhctsa开源项目数据可视化时间序列分析机器学习特征提取
hctsa是一款功能强大的MATLAB时间序列分析工具包,专注于特征提取和比较分析。它能从单变量时间序列中提取大量特征,并提供多种分析工具。主要功能包括数据标准化、聚类、降维、特征识别和分类模型评估。该工具包适用于多领域的时间序列研究,能够深入挖掘数据特征,进行全面的比较分析。
Awesome-GNN4TS - 时间序列分析中图神经网络的研究进展与应用
GNNGithub图神经网络开源项目时间序列分析机器学习深度学习
本项目汇集图神经网络(GNN)在时间序列分析领域的研究进展和资源,涵盖预测、分类、异常检测和插值等任务。内容包括相关论文、数据集和应用概述,以及面向任务和模型的GNN4TS分类方法,为该领域研究和应用提供参考。
tfcausalimpact - TensorFlow实现的因果影响分析库
CausalImpactGithubTensorFlow因果推断开源项目时间序列分析贝叶斯结构模型
tfcausalimpact是一个基于TensorFlow实现的因果影响分析库。该工具利用贝叶斯结构模型分析干预前后的数据,评估干预效果。支持Python 3.7-3.11,提供统计结果输出和可视化功能。通过变分推断和HMC两种拟合方法,在分析精度和计算性能间实现平衡。适用于研究人员和数据科学家进行因果推断分析,操作简便,功能强大。
TabFormer - 用于对多变量时间序列进行建模的表格转换器
GithubICASP 2021TabFormerTabular BERT信用卡交易数据集多变量时间序列开源项目
该项目提供了用Pytorch实现的Tabular Transformers源代码和数据,可用于多变量时间序列建模。项目特点包括层级变压器模块、综合信用卡交易数据集、改进的自适应Softmax和为表格数据调整的DataCollatorForLanguageModeling模块。代码架构基于HuggingFace的transformers框架,拥有很好的扩展性和易用性。
TS-TCC - 创新的时间序列无监督表示学习方法
GithubIJCAI对比学习开源项目时间序列自监督学习表示学习
TS-TCC是一种无监督时间序列表示学习框架,利用时间和上下文对比从未标记数据中学习表示。该方法在多个真实数据集上表现优异,适用于少量标记数据和迁移学习场景。TS-TCC还扩展到半监督设置(CA-TCC),相关研究发表于IEEE TPAMI。这一方法为时间序列分析提供了有效的表示学习工具,推动了该领域的发展。
iTransformer - 先进的时间序列预测模型,打造SOTA性能
GithubiTransformer人工智能开源项目时间序列预测注意力网络深度学习
iTransformer是一种基于注意力机制的时间序列预测模型,由清华大学和蚂蚁集团研究人员开发。该模型采用倒置Transformer结构,支持多变量和多步长预测。iTransformer引入了可逆实例归一化等技术,旨在提高预测准确性和处理长序列数据的能力。这个开源项目为时间序列分析提供了新的研究方向。项目提供Python实现,支持使用PyTorch框架。用户可通过pip安装并轻松集成到现有的时间序列分析工作流程中。该项目还包括实验性功能,如二维注意力和傅里叶变换增强版本,为研究人员提供了探索和改进的空间。
chronos-forecasting - 基于语言模型架构的预训练时间序列预测工具
AutoGluonChronosGithub开源项目时间序列语言模型预训练
Chronos是一款基于语言模型架构的预训练时间序列预测工具。它通过量化处理将时间序列转换为标记序列,并使用大规模的公开和合成数据进行训练。Chronos模型在零样本场景中表现优异,提供从预测到嵌入提取的完整解决方案。通过AutoGluon,用户可轻松进行模型集成和云端部署,提升预测性能和应用的灵活性。
statsforecast - 快速高效的统计时间序列预测工具
GithubStatsForecast开源项目性能优化时间序列预测统计模型自动模型
StatsForecast是一个专注于统计时间序列预测的Python库。它集成了多种常用模型如ARIMA、ETS等,并通过numba实现高性能计算。该库支持概率预测、外生变量处理和异常检测,可与Spark等大数据框架无缝对接。StatsForecast能高效处理大规模时间序列数据,适用于生产环境和基准测试。
awesome-llm-interpretability - 深入理解大语言模型内部机制与可解释性
GithubLLM人工智能可解释性开源项目机器学习神经网络
该项目汇集了大语言模型(LLM)可解释性领域的核心资源,包括解释性工具、学术论文、行业报告和深度分析文章。内容涵盖神经元分析、注意力机制、模型行为等多个维度,旨在帮助研究人员和开发者深入理解LLM内部原理,提升模型透明度。项目为LLM可解释性研究提供了全面的知识库和工具集。
pytimetk - 快速高效的Python时间序列分析库
GithubPython库pytimetk可视化开源项目数据处理时间序列分析
pytimetk是一个高效的Python时间序列分析库,通过简洁语法和优化计算简化了时间序列操作和可视化。相比pandas,它提供3-3500倍的速度提升,并减少代码复杂度。主要功能包括快速时间聚合、便捷绘图、日历特征提取和异常检测等。pytimetk适用于商业预测和科学研究,为时间序列分析提供了全面的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号