Project Icon

einx

跨框架张量运算统一接口库

einx是一个Python库,为多个主流深度学习框架提供统一的张量操作接口。它采用类爱因斯坦符号系统表达基础张量操作的向量化,支持无缝集成现有代码。通过即时编译提升执行效率,einx不仅支持基础张量操作,还涵盖常见神经网络操作和可选的深度学习模块。

einops - 灵活高效的张量操作,兼容多个框架
Githubeinopsnumpypytorchtensor操作开源项目深度学习
Einops 提供简洁高效的张量操作,适用于 numpy、pytorch、tensorflow、jax 等多个框架。通过易于理解的 Einstein 风格操作符,提高代码的可读性和可靠性。主要功能包括张量的重新排列、简化、复制、打包与解包。Einops 适用于深度学习和复杂数据处理任务,是开发者优化代码的理想工具。
thinc - 灵活轻量的深度学习库,支持多种主流框架
GithubMXNetPyTorchTensorFlowThincdeep learning开源项目
Thinc是一款轻量级深度学习库,提供简洁的函数式编程API,支持与PyTorch、TensorFlow、MXNet等框架的集成。用户可以通过Thinc构建、配置和部署自定义模型。Thinc支持类型检查、简洁的函数式模型定义、可扩展的后台系统,并兼容Python 3.6+,适用于Linux、macOS和Windows操作系统。
equinox - 强大且易用的JAX兼容神经网络库
EquinoxGithubJAXPyTree开源项目神经网络转换API
Equinox是一款专为JAX设计的神经网络库,拥有类似PyTorch的语法。该库支持过滤API和PyTree操作,并兼容JAX及其生态系统中的所有工具。对于新手用户,推荐使用MNIST卷积神经网络示例,简化模型构建过程。Equinox还提供运行时错误处理等高级功能。
nx - Elixir的多维数组和数值计算库集合
EXLAGithubNxTorchx多维数组开源项目数值计算
该项目集合包括Nx,一个用于Elixir的多维数组和数值计算库;EXLA,基于Google XLA的编译器/后端;以及Torchx,基于LibTorch的后端。每个项目都有独立的README文件。未来,这些项目将独立存储。EXLA项目还包含了示例和基准测试。更多关于Elixir中机器学习的介绍,请访问组织页面。
Endia - 面向科学计算的高性能动态数组库
EndiaGithubJIT编译动态数组库开源项目科学计算自动微分
Endia是一个专为科学计算设计的动态数组库,提供类似PyTorch、Numpy和JAX的功能。它支持自动微分、复数运算、双重API接口和JIT编译。Endia可进行命令式和函数式编程,计算任意阶导数,适用于高级科学应用。该项目注重代码清晰度和教育价值,致力于推动AI和科学计算领域的进步。
mlx - 为Apple芯片优化的开源机器学习框架
APIApple芯片GithubMLX开源项目数组框架机器学习
MLX是一款针对Apple芯片优化的开源机器学习框架。它具有类NumPy的Python接口、可组合的函数转换、惰性计算和动态图构建等特性。通过统一内存模型,MLX支持在CPU和GPU间无缝切换。该框架为机器学习研究者提供了友好高效的开发环境,有助于快速验证创新想法。
tensorly - Python张量学习库,兼容多种计算后端
GithubPythonTensorLy开源项目张量代数张量分解机器学习
TensorLy是一个专注于简化张量学习的Python库,支持张量分解、张量学习和张量代数操作。其后端系统兼容NumPy、PyTorch、JAX、TensorFlow和CuPy,可在CPU或GPU上执行大规模计算。安装方便,仅需使用pip或conda命令,且提供详尽的文档和Jupyter Notebooks示例,方便用户快速入门。这个工具不仅适合学术研究,还为开发者提供了丰富的API,欢迎通过GitHub进行贡献。
TensorLayerX - 兼容多后端的AI框架,支持深度学习开发
AI框架GithubTensorLayerX多后端开源项目模型部署深度学习
TensorLayerX是一款支持多种后端(如TensorFlow、PyTorch、MindSpore、PaddlePaddle)的AI框架,允许用户在不同硬件上运行代码。该项目由北京大学、鹏城实验室、香港科技大学、帝国理工学院、普林斯顿大学、牛津大学、斯坦福大学、清华大学和爱丁堡大学的研究员维护,具备高度兼容性、丰富的模型库和便捷的部署能力,为深度学习开发者提供支持。
lineax - 基于JAX的线性求解和最小二乘优化库
GithubJAXLineaxPython库开源项目最小二乘法线性求解
Lineax是基于JAX开发的线性求解和最小二乘优化库,提供多种算法解决Ax = b问题。该库支持PyTree值矩阵和向量、通用线性算子及结构化矩阵,具备高效的求解器和稳定的梯度计算。Lineax优化了编译和运行性能,支持实值和复值输入,并集成JAX的自动微分、并行计算和硬件加速等功能。
onnx - 跨平台开源机器学习模型交换格式
GithubGlobal Corporation人工智能企业安全开源项目社交媒体跨平台应用
ONNX是一种开放的机器学习模型表示格式,支持跨框架模型互操作。它定义了统一的模型表示方式,实现不同AI框架间的模型转换。ONNX简化模型部署过程,提升AI应用效率。作为行业标准,ONNX促进AI生态系统发展,为开发者和企业带来更多可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号