Project Icon

einx

跨框架张量运算统一接口库

einx是一个Python库,为多个主流深度学习框架提供统一的张量操作接口。它采用类爱因斯坦符号系统表达基础张量操作的向量化,支持无缝集成现有代码。通过即时编译提升执行效率,einx不仅支持基础张量操作,还涵盖常见神经网络操作和可选的深度学习模块。

neon - 深度学习框架,兼容多硬件,实现高效模型训练
GithubIntelMKLNervananeon开源项目深度学习框架
neon是Intel推出的深度学习框架,旨在实现最佳性能,兼容多种硬件。提供全面的教程和iPython笔记本,支持卷积层、RNN、LSTM、GRU和BatchNorm等常用层。预训练模型库和示例脚本涵盖VGG、强化学习、深度残差网络等。neon v2.0.0+优化了CPU性能,集成Intel Math Kernel Library,用户可快速安装并部署在CPU、GPU或Nervana硬件上。
axon - 基于Nx框架的Elixir深度学习库,支持模型创建和训练
AxonElixirGithub开源项目模型创建深度学习训练API
Axon是一个基于Nx的Elixir深度学习库,提供高效的神经网络功能。核心组件包括数值定义的Functional API、模型创建的Model Creation API和训练模型的Training API。Axon通过模块化设计,实现各API独立使用,并通过Polaris进行优化。该库支持多种深度学习层和模型格式,如TensorFlow Lite和ONNX,适用于多种深度学习应用。
onnx - 一个为 AI 开发人员提供支持的开放生态系统
AI模型GithubONNX开源项目推理机器学习深度学习
ONNX是一个开放生态系统,提供AI模型的开源格式,支持深度学习和传统机器学习。通过定义可扩展的计算图模型和内置操作符及标准数据类型,ONNX增强了不同框架间的互操作性,加速了从研究到生产的转化。ONNX广泛支持各种工具和硬件,助力AI社区快速创新。了解ONNX的文档、教程和预训练模型,加入社区,共同推动ONNX的发展。
jina - 帮助开发者构建和部署多模态AI应用的开源框架
DeploymentExecutorGithubJina云原生技术多模态AI开源项目热门
Jina是一个强大的开源框架,帮助开发者构建和部署多模态AI应用。它支持通过gRPC、HTTP和WebSockets通信,并且可以轻松扩展和部署到生产环境。无需担心底层基础设施的复杂性,开发者可以专注于逻辑和算法。Jina支持任何数据类型和主流深度学习框架,提供Pythonic体验,从本地部署到使用Docker-Compose、Kubernetes或Jina AI Cloud的高级编排。此外,Jina的流水线功能允许多个微服务容器化并独立扩展,实现高性能服务设计。
infinity - 高效低延迟的REST API用于矢量嵌入,支持多种模型
GithubInfinityREST API低延迟向量嵌入开源项目高吞吐量
Infinity是一个高吞吐量、低延迟的REST API,专为矢量嵌入服务,支持所有SentenceTransformers模型和框架。其内置如torch、optimum、CTranslate2等快速推理后端,兼容多种硬件加速器。API简单易用,基于FastAPI和Swagger,完全文档化,并与OpenAI嵌入规范对齐。Infinity支持动态批处理、多模态、INT8和FP8等功能,提供多种部署方式,包括Docker、Python API和云端服务。
deepxde - 科学计算与物理学习的深度学习库
DeepXDEGithub开源项目深度学习库物理信息学习神经网络科学机器学习
DeepXDE 是一个为科学计算和物理引导学习设计的深度学习库。它支持解决多种复杂问题,如常微分方程、偏微分方程、分数阶微分方程和随机微分方程等。DeepXDE 支持多个后端,包括 TensorFlow、PyTorch、JAX 和 PaddlePaddle,提供丰富的几何域、边界条件、自动微分和采样方法。其模块化设计允许用户自定义和扩展模块,适用于科研和工业应用。
DI-treetensor - 树状张量结构简化深度学习中的复杂计算
DI-treetensorGithubOpenDILabPyTorch开源项目张量树形结构
DI-treetensor是OpenDILab开发的树状张量结构库,支持树形方式进行张量操作,简化了复杂的树形计算过程。该项目提供创建树状张量、数学运算和反向传播等功能,与PyTorch兼容。DI-treetensor为树形数据处理提供了灵活高效的解决方案,适用于深度学习中的复杂数据结构处理。
flax - 灵活强大的JAX神经网络库和生态系统
FlaxGithubJAX开源项目机器学习深度学习神经网络库
Flax是一个基于JAX的高性能神经网络库,以灵活性为核心设计理念。它提供神经网络API、实用工具、教育示例和优化的大规模端到端示例。Flax支持MLP、CNN和自编码器等多种网络结构,并与Hugging Face集成,涵盖自然语言处理、计算机视觉和语音识别等领域。作为Google Research与开源社区合作开发的项目,Flax致力于促进JAX神经网络研究生态系统的发展。
axlearn - 支持构建大规模深度学习模型的高效工具库
AXLearnGithubJAXXLA开源项目机器学习深度学习
AXLearn是一个基于JAX和XLA的深度学习库,支持大规模模型的构建、迭代和维护。该库允许用户通过配置系统从可重用模块中组合模型,并兼容Flax和Hugging Face transformers等库。AXLearn能够高效地在众多加速器上训练数百亿参数的模型,涵盖自然语言处理、计算机视觉和语音识别等领域,还支持在公共云上运行并提供作业和数据管理工具。了解更多详情,请参阅其核心组件和设计文档。
optimum-intel - Transformers和Diffusers库与Intel提供的不同工具和库之间的接口,用于加速 Intel 架构上的端到端管道
GithubIntel Extension for PyTorchNNCFNeural CompressorOpenVINOOptimum Intel开源项目
Optimum Intel接口将Hugging Face的Transformers和Diffusers库与Intel的工具相结合,优化PyTorch模型性能。支持Intel Neural Compressor的量化和剪枝技术,OpenVINO的高性能推理以及Intel Extension for PyTorch的操作融合和图优化。Optimum Intel提供简单直观的接口和丰富示例,便于在Intel硬件上部署高效模型。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号