Project Icon

rlax

JAX驱动的强化学习算法构建库

RLax是基于JAX的强化学习工具库,提供实现智能体所需的核心模块。支持价值估计、分布式价值函数、通用价值函数和策略梯度等功能,适用于在线和离线学习。借助JAX实现即时编译,RLax能在多种硬件上高效运行,为开发者提供灵活的工具构建强化学习算法。

nanodl - 设计与训练变压器模型的Jax库
GithubJaxNanoDLtransformer模型分布式训练开源项目深度学习
这是一个基于Jax的库,旨在简化变压器模型的开发和训练,特别适合资源有限的环境。支持多种模型如Gemma、GPT3、T5和Whisper,涵盖自然语言处理和计算机视觉任务。提供灵活的模块和层,包括Jax/Flax中未提供的RoPE、GQA、MQA和Swin注意力机制,支持多GPU/TPU的数据并行训练,简化数据处理。该库还包含加速的经典机器学习模型,帮助用户以最小的代码重写快速实现模型开发和训练。
paxml - 基于Jax的高效机器学习实验配置和运行框架
Cloud TPUGithubGooglePaxml开源项目性能优化机器学习
Paxml是一个基于Jax的开源框架,致力于机器学习实验的配置与运行。该框架支持云TPU VM快速部署,同时提供PyPI和GitHub的稳定及开发版本下载。Paxml还包含丰富的文档资源和Jupyter Notebook教程,支持GPU加速,并可广泛适用于不同开发者的需求,是推动机器学习实验项目高效发展的优选工具。
mctx - 高效JAX实现的蒙特卡洛树搜索库
GithubJAXMctx开源项目强化学习深度学习蒙特卡洛树搜索
Mctx是一个基于JAX的蒙特卡洛树搜索库,实现了AlphaZero和MuZero等算法。该库支持JIT编译和并行批处理,以提高计算效率。Mctx平衡了性能和易用性,为研究人员提供了探索搜索型强化学习算法的便利工具。它包含通用搜索函数和具体策略实现,用户只需提供学习到的环境模型组件即可使用。
ElegantRL - 云原生高效的大规模并行深度强化学习框架,支持弹性扩展
DRL算法ElegantRLGithub云原生并行计算开源项目深度强化学习
ElegantRL是一个云原生的大规模并行深度强化学习框架,支持多种DRL算法和多代理环境。其核心代码少于1000行,具备轻量、高效和弹性特点。通过微服务架构和容器化,支持大规模计算节点扩展,并自动分配云端资源。相比Ray RLlib和Stable Baselines 3,ElegantRL在单GPU、多GPU和云平台测试中更稳定高效。广泛应用于RLSolver、FinRL等项目,并支持Isaac Gym等模拟器。
DeepRL - PyTorch 中深度强化学习算法的模块化实现
A2CDQNDeepRLGithubPyTorch开源项目深度强化学习
DeepRL项目使用PyTorch实现了一系列流行的深度强化学习算法,提供模块化框架,适用于从简单任务到高难度游戏。支持的算法包括DQN、C51、QR-DQN、A2C、DDPG、PPO等,并具备异步数据生成和传输功能。项目依赖PyTorch v1.5.1,具体依赖请参考Dockerfile和requirements.txt。此外,项目提供代码示例和性能曲线图,适合相关研究参考和使用。
simple_rl - 轻量级Python强化学习实验框架
GithubPython复现结果实验开源项目强化学习简单框架
simple_rl框架专注于简化强化学习实验流程和提高结果可复现性。它内置了网格世界、OpenAI Gym等MDP环境,实现了Q-learning和R-Max等经典算法。新增的实验复现功能方便研究者重现成果。该框架支持Python 2和3,为强化学习研究和教学提供了实用工具。
autonomous-learning-library - PyTorch深度强化学习库助力智能代理开发
GithubPyTorch开源项目智能体深度强化学习算法实现自主学习库
autonomous-learning-library是基于PyTorch的深度强化学习库,为快速构建和评估智能代理提供丰富组件。库中包含灵活的函数近似API、多种内存缓冲区和环境接口,并实现了A2C、DQN、PPO等主流算法。支持Atari、经典控制和机器人仿真等环境,集成Tensorboard等工具便于实验监控。该库特别强调模块化设计,便于研究人员快速实现和测试新想法。同时提供完整文档和示例项目,降低了强化学习研究的入门门槛。
cleanrl - 一个深度强化学习库
CleanRLGithubPPO算法云集成单文件实现开源项目深度强化学习
CleanRL是一款简洁高效的深度强化学习库,提供单文件实现和广泛的算法支持,包括PPO、DQN等。它支持本地和云端实验、Tensorboard日志记录及Weights and Biases管理,适用于研究与快速原型开发。
openrl - 综合性强化学习平台,支持多任务训练
GithubOpenRLPyTorch多智能体开源项目强化学习自然语言处理
OpenRL 是一款基于 PyTorch 的开源强化学习研究框架,支持单代理、多代理、离线强化学习、自我对弈及自然语言处理任务。框架提供统一接口、训练加速方法和多种深度学习模型支持,兼容 Gymnasium、MuJoCo、StarCraft II 等多种环境。同时,OpenRL 还支持用户自定义训练模型、奖励模型和环境配置,并提供中英文文档。
optimistix - JAX生态系统中的高效非线性求解器
GithubJAXOptimistixPython库开源项目数值优化非线性求解器
Optimistix是一个基于JAX的非线性求解器库,专门用于根查找、最小化、不动点和最小二乘问题。该库提供可互操作的求解器和模块化优化器,支持PyTree状态,并与Optax兼容。Optimistix具有快速编译和运行时间,充分利用JAX的自动微分、自动并行和GPU/TPU支持等特性,为科学计算和机器学习领域提供高效工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号