Project Icon

vit-large-patch16-384

Vision Transformer大模型,提升高分辨率图像分类表现

项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。

fastvit_ma36.apple_in1k - Apple开源的高性能混合视觉Transformer图像处理模型
FastViTGithubHuggingface图像分类开源项目机器学习模型神经网络计算机视觉
FastViT是Apple开源的混合视觉Transformer模型,基于结构重参数化技术构建。模型在ImageNet-1k数据集训练,参数量4410万,支持256x256图像输入。主要功能包括图像分类、特征图提取和图像嵌入表示。通过混合架构设计,在保证准确率的基础上优化了计算效率。
vision_transformer - 视觉Transformer和MLP-Mixer模型库 高性能图像识别
FlaxGithubJAXMLP-MixerVision Transformer图像识别开源项目
项目包含多种视觉Transformer(ViT)和MLP-Mixer模型实现,提供ImageNet和ImageNet-21k预训练模型及JAX/Flax微调代码。通过交互式Colab笔记本可探索5万多个模型检查点。这些高性能图像分类模型代表了计算机视觉的前沿进展。
vit_base_patch16_clip_224.openai - CLIP:跨模态视觉语言理解模型
CLIPGithubHuggingface人工智能图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉-语言预训练模型,在timm库中实现。它使用ViT-B/16 Transformer作为图像编码器,masked self-attention Transformer作为文本编码器,通过对比学习优化图像-文本对相似度。CLIP在零样本图像分类任务中展现出优秀的鲁棒性和泛化能力,但在细粒度分类和物体计数方面仍有局限。该模型主要面向AI研究人员,用于探索计算机视觉模型的能力和局限性。
dino-vits16 - DINO训练的小型Vision Transformer模型及其应用
DINOGithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
dino-vits16是一个基于DINO方法训练的小型Vision Transformer模型。该模型在ImageNet-1k数据集上进行自监督预训练,能够有效学习图像特征表示。它采用16x16像素的图像块作为输入,可应用于多种视觉任务。dino-vits16展示了自监督学习在计算机视觉领域的潜力,为图像分类等下游任务奠定了基础。
vit-base-cats-vs-dogs - 基于Vision Transformer的猫狗图像分类模型
GithubHugging FaceHuggingfaceViT模型图像分类开源项目模型猫狗数据集迁移学习
该模型是基于google/vit-base-patch16-224-in21k在cats_vs_dogs数据集上微调的图像分类模型。采用Vision Transformer架构,在评估集上实现98.83%的准确率。模型可用于宠物识别、动物摄影分类等猫狗图像分类任务。开发者可以方便地将其集成到各种应用中,实现高效的猫狗识别功能。
swinv2-base-patch4-window8-256 - 增强视觉Transformer模型,提供升级的容量与图像分辨率
GithubHuggingfaceImageNetSwin Transformer图像分类开源项目模型自监督预训练视觉Transformer
Swin Transformer v2是为图像分类和密集识别任务而设计的视觉Transformer模型。它在ImageNet-1k上进行256x256分辨率的预训练,具有通过局部窗口自注意力机制实现线性计算复杂度的特性。相比前代,Swin Transformer v2加入了残差后范数加余弦注意力以提升训练稳定性、日志距离连续位置偏置以提升低分辨率预训练模型在高分辨率任务中的表现,以及SimMIM自我监督预训练方法以减少对大规模标注图像的依赖。
beit-base-patch16-224-pt22k-ft22k - BEiT 基于Transformer的自监督图像分类模型
BEiTGithubHuggingfaceImageNet图像分类开源项目模型自监督学习视觉转换器
BEiT是一种基于Transformer的图像分类模型,在ImageNet-22k数据集上进行自监督预训练和微调。它采用掩码预测目标和相对位置编码,有效学习图像表示。该模型在多个图像分类基准测试中表现出色,为计算机视觉任务提供了强大的基础。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
LaVIT - 大语言模型理解生成视觉内容的统一框架
GithubLaVIT多模态大语言模型开源项目视觉内容理解视觉内容生成预训练策略
LaVIT项目是一个创新的多模态预训练框架,旨在增强大语言模型处理视觉内容的能力。该项目通过动态离散视觉标记化技术,将图像和视频转换为离散标记序列,使大语言模型能够理解和生成视觉内容。LaVIT支持图像和视频的理解、生成,以及多模态提示生成,为计算机视觉和自然语言处理的融合提供了新的可能性。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号