Project Icon

cartpole

强化学习算法DQN在OpenAI Cartpole环境中的应用

该项目展示了如何在OpenAI的Cartpole任务中应用DQN(深度Q学习)算法解决问题。通过调整超参数如GAMMA、学习率和记忆大小,目标是防止附有未驱动关节的杆子在无摩擦轨道上的小车倒下,以保持杆子直立并获得高奖励。解决标准是连续100次试验中平均奖励达到195。

Gymnasium-Robotics - 基于Gymnasium和MuJoCo的强化学习机器人环境库
GithubGymnasiumMuJoCoPython开源项目强化学习机器人环境
Gymnasium-Robotics是一个强化学习机器人环境库,基于Gymnasium API和MuJoCo物理引擎开发。它提供多种机器人环境,包括Fetch机械臂、Shadow灵巧手等,并支持多目标API。该项目还集成了D4RL环境,如迷宫导航和Adroit机械臂。Gymnasium-Robotics为研究人员提供丰富的机器人操作任务,有助于开发和测试强化学习算法。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
envpool - 高性能并行强化学习环境执行引擎
EnvPoolGithub并行处理开源项目强化学习环境仿真高性能计算
EnvPool是一款基于C++的高性能并行强化学习环境引擎。它支持Atari、Mujoco等多种环境,提供同步和异步执行模式,适用于单玩家和多玩家场景。EnvPool易于集成新环境,在高端硬件上可达到每秒100万Atari帧或300万Mujoco步骤的模拟速度,比传统Python子进程方法快约20倍。作为通用解决方案,EnvPool可显著加速各类强化学习环境的并行化执行。
HighwayEnv - 多场景自动驾驶模拟与决策训练环境
Githubhighway-env决策系统开源项目强化学习环境仿真自动驾驶
HighwayEnv是一个自动驾驶和决策任务模拟环境集。它包含高速公路、环岛、停车场和十字路口等多种场景,模拟真实驾驶情况。支持DQN、DDPG和MCTS等多种强化学习算法,便于研究人员开发和测试自动驾驶策略。该项目具有良好的可用性和扩展性,适用于自动驾驶研究和教学。
FinRL_Podracer - 高效轻量的强化学习量化交易框架
GithubPodracer开源项目强化学习算法策略量化交易金融科技
FinRL_Podracer是基于ElegantRL和FinRL构建的中级强化学习量化交易框架。该框架为开发者和专业人士提供轻量级、高效和稳定的算法交易策略开发解决方案。FinRL_Podracer支持DDPG、TD3、SAC等多种深度强化学习算法,适用于连续和离散动作空间。框架采用Pythonic设计原则,注重研究人员和算法交易者需求,支持灵活的代码迭代和精细控制。
deep-algotrading - 深度学习算法在金融交易中的探索与实践
GithubTensorFlow开源项目深度学习神经网络过拟合金融数据
本项目展示了深度学习技术在金融交易领域的应用。从简单回归到LSTM和策略网络,逐步介绍不同复杂度的算法模型。内容包括TensorFlow使用、深度强化学习概念,以及交易策略的构建与优化。通过代码示例和详细说明,读者可学习如何将深度学习应用于金融数据分析和算法交易。这是一个面向学习者和从业者的教育资源,展示了深度学习在非传统领域的创新应用。
awesome-exploration-rl - 强化学习探索策略全面指南
Github实验开源项目强化学习探索方法环境算法
该项目聚焦强化学习探索方法,提供最新研究论文、分类体系和可视化案例。涵盖经典和前沿探索策略,持续追踪领域进展。对研究人员和实践者而言是宝贵参考,可用于研究探索-利用权衡或解决具体挑战。项目内容全面且定期更新,是强化学习探索领域的重要资源库。
snake - 人工智能优化的贪吃蛇游戏
AIGithubPythonSnake开源项目性能评估算法
该项目使用Python重写了经典贪吃蛇游戏,重点在于实现和优化人工智能算法。游戏中蛇的目标是不断吃食物并尽快填满地图。项目通过平均长度和平均步数两个指标评估了AI的表现,展示了Hamilton、Greedy和DQN三种算法的测试结果。该项目支持Python 3.6+及Tkinter,并提供了简单的安装和运行指南。
Gym.NET - OpenAI Gym的C#移植版,适用于强化学习环境
C#GithubGym.NETOpenAI Gym工具包开源项目强化学习
Gym.NET是OpenAI Gym的C#移植版本,提供标准化的强化学习开发环境。用户可通过NuGet安装Gym.NET及其多种环境和渲染模块,支持例如CartPole-v1等经典环境的运行和渲染。项目目标是逐步实现多种OpenAI Gym环境,包括经典、Mujoco、Box2D和Atari等。详细的安装步骤和示例代码请参考项目的GitHub页面。
Gymnasium - Python强化学习标准API和环境开源库
AI环境GithubGymnasiumPython库开源项目强化学习
Gymnasium是一个用于开发和比较强化学习算法的开源Python库,提供标准API和丰富的环境集。它包括经典控制、Box2D、玩具文本、MuJoCo和Atari等多种环境类型,促进算法与环境的高效交互。作为OpenAI Gym的延续,Gymnasium现由独立团队维护,提供完善的文档和活跃的社区支持。该库采用严格的版本控制以确保实验可重复性,并提供灵活的安装选项满足不同用户需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号