Project Icon

uncertainty-calibration

深度学习预测校准技术的前沿研究与实践应用

uncertainty-calibration项目是预估校准技术研究的综合资源库。该项目涵盖后处理方法、模型集成方法和校准理论分析等多个领域,并提供广告等实际应用案例。项目还包括评价指标、公开数据集和中文资料,为研究人员和从业者提供了全面的校准技术参考。

uncertainty-baselines - 提供高质量的不确定性和鲁棒性标准模板
GithubTPUTensorFlowUncertainty Baselines开源项目数据集模型
Uncertainty Baselines提供高质量的不确定性和鲁棒性标准模板,作为研究人员新想法和应用的起点,促进技术交流。项目高效实施关键任务,减少对代码库其他文件的依赖,便于独立使用。建议不确定性和鲁棒性评估的最佳实践,帮助研究人员快速原型化和基准比较。支持TensorFlow开发,可在TPUs和GPUs上运行,提升实验灵活性和重复性。
awesome-uncertainty-deeplearning - 深度学习不确定性估计资源汇总
Github不确定性开源项目深度学习神经网络贝叶斯方法集成学习
该项目汇集深度学习不确定性估计领域的论文、代码、书籍和博客。内容涵盖贝叶斯方法、集成方法、采样/dropout方法等技术,以及在分类、回归、异常检测等方面的应用。项目为研究人员和实践者提供全面参考,助力深入理解和应用深度学习中的不确定性估计。
conformal-prediction - 严谨量化机器学习不确定性的开源框架
Github不确定性量化共形预测开源项目机器学习置信区间预测集
Conformal Prediction 是一个开源项目,提供严谨的机器学习不确定性量化方法。项目包含多个即用型示例,涵盖图像分类、回归等应用,无需原始数据和模型即可运行。研究人员和开发者可轻松上手此技术,探索其在实际问题中的应用,为模型增添可靠的不确定性估计。
Awesome-LLM-Uncertainty-Reliability-Robustness - 大语言模型的不确定性、可靠性和鲁棒性研究资源集
GithubLLM不确定性可靠性开源项目评估鲁棒性
该项目汇集了大语言模型不确定性、可靠性和鲁棒性相关的研究资源。内容包括模型评估、不确定性估计、校准、幻觉、真实性和推理能力等方面。通过整理这些资料,项目为研究人员和开发者提供了深入了解大语言模型局限性和改进方向的参考。
MAPIE - 开源机器学习不确定性量化与风险控制库
GithubMAPIE不确定性量化保证覆盖率开源项目机器学习预测区间
MAPIE是一个开源Python库,用于量化机器学习模型的不确定性和控制风险。它计算可控覆盖率的置信预测区间,适用于回归、分类和时间序列分析。MAPIE还可控制多标签分类和语义分割等复杂任务的风险。该库兼容各类模型,遵循scikit-learn API,基于同行评审算法提供理论保证。MAPIE仅依赖scikit-learn和numpy,支持Python 3.7及以上版本。
SensorsCalibration - 开源多传感器标定工具箱助力自动驾驶系统优化
GithubOpenCalib传感器标定多传感器融合开源项目自动驾驶
SensorsCalibration是一个开源的多传感器标定工具箱,专注于自动驾驶领域。这个工具箱提供了IMU、LiDAR、摄像头和雷达等传感器的内参和外参标定方法。它支持基于目标和无目标的标定,同时具备手动和自动标定模式。此外,SensorsCalibration还包含工厂标定和传感器到车辆坐标系的在线标定功能。通过提高传感器融合的精度,这个工具箱为自动驾驶系统的开发和优化提供了重要支持。
lightning-uq-box - 神经网络不确定性量化开源工具库
GithubLightning-UQ-BoxPyTorch不确定性量化开源项目机器学习深度学习
Lightning-UQ-Box是基于PyTorch的开源库,为神经网络提供多种不确定性量化技术。该库实现了多种UQ方法,支持不同架构和理论基础,便于在数据集上比较方法效果。它简化了UQ在工作流中的应用,降低了使用门槛,有助于促进UQ方法的比较和开发,并注重实验的可重现性。
fortuna - 不确定性量化的开源库
AWS SageMakerBayesian推理FortunaGithub不确定性量化开源项目深度学习
Fortuna是一个专用于不确定性量化的开源库,适用于需要做出关键决策的场景。它提供了从预训练模型和深度学习模型进行校准和共形的方法,并支持多种贝叶斯推断方法。通过简单直观的语言和高度配置的特性,用户可以轻松运行基准测试并将不确定性引入生产系统。Fortuna支持从不确定性估算、模型输出以及Flax模型三种模式,确保预测结果的可靠性。详见官方文档和示例。
bayesian-torch - 贝叶斯神经网络层和不确定性估计的PyTorch扩展库
Bayesian-TorchGithubPyTorch不确定性估计变分推断开源项目深度学习
Bayesian-Torch是PyTorch的扩展库,用于在深度学习模型中实现贝叶斯推理和不确定性估计。它提供贝叶斯层,支持将确定性神经网络转换为贝叶斯形式。库包含变分推理、MOPED、量化和AvUC损失等功能,适用于不确定性感知应用。研究人员和开发者可利用Bayesian-Torch构建更可靠、可解释的AI模型。
cam_lidar_calibration - 相机与激光雷达自动校准优化工具
Github传感器融合开源项目棋盘格标定点云处理相机激光雷达标定计算机视觉
这是一个开源的相机与激光雷达自动校准工具,通过优化样本选择简化校准流程。它克服了基于目标校准的局限性,可获得适合整个场景的参数估计及不确定性。工具提供硬件设置、配置、数据采集和结果评估的使用说明,支持ROS Melodic环境。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号