Project Icon

exporters

将Transformer模型高效转换为Core ML格式

🤗 Exporters工具包旨在简化将Transformer模型转换为Core ML格式的过程,避免手动编写转换脚本。它与Hugging Face Transformers库紧密集成,并提供无代码转换体验,支持BERT和GPT-2等多种模型架构。工具包可在Linux和macOS平台上运行,利用coremltools实现从PyTorch或TensorFlow到Core ML的转换,并通过Hugging Face Hub进行模型管理,提升模型转换和部署的便捷性及灵活性。

coremltools - Core ML格式模型转换和优化工具
Core MLCore ML ToolsGithubPython包开源项目机器学习模型转换
coremltools工具可以将TensorFlow、PyTorch、scikit-learn等机器学习模型转换为Core ML格式,并支持对这些模型的读写、优化和验证。这些模型可以无缝集成到Xcode项目中使用。
swift-coreml-transformers - 实现GPT-2和BERT等Transformer模型
CoreMLGithubSwiftTransformers开源项目模型转换自然语言处理
swift-coreml-transformers项目提供了GPT-2、DistilGPT-2、BERT和DistilBERT等Transformer模型的Swift Core ML实现。项目包括预训练模型、转换脚本、分词器实现和演示应用。开发者可在iOS设备上部署这些自然语言处理模型,实现文本生成和问答功能。该开源项目展示了如何将先进NLP技术应用于移动设备。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
ctransformers - Python接口的高效C/C++ Transformer模型
CTransformersGGMLGithubLangChainPythonTransformer模型开源项目
CTransformers提供Python接口,通过GGML库高效加载和运行C/C++实现的Transformer模型。支持多种模型类型,如GPT-2、GPT-J、LLaMA等,并可与Hugging Face和LangChain集成。提供CUDA、ROCm和Metal兼容的GPU加速选项,适合高性能自然语言处理任务。
x-transformers - 轻量级Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种从图像分类到语言模型的应用
Githubtransformerx-transformers开源项目模型训练编码器编解码器
x-transformers提供了多功能的Transformer模型,支持完整的编解码器配置和最新研究成果,适合各种应用,从图像分类到语言模型。其先进技术如闪存注意力和持久内存,有助于提高模型的效率和性能。此项目是研究人员和开发者的理想选择,用于探索和优化机器学习任务中的Transformer技术。
xformers - Transformer 研究加速工具
GithubPyTorchTransformerxFormers开源项目注意力机制深度学习
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
simpletransformers - 快速构建和优化Transformer模型的开源工具
GithubHugging FaceNLPSimple Transformers开源项目机器学习深度学习
simpletransformers是一个基于Hugging Face Transformers的开源工具,通过简化的API让用户能够用少量代码快速构建和优化Transformer模型。该库支持文本分类、命名实体识别、问答系统等多种NLP任务,为研究人员和开发者提供了便捷的方式来应用这些强大的模型。simpletransformers具有直观的接口和丰富的功能,可用于各类自然语言处理场景,有效降低了使用Transformer模型的门槛。
happy-transformer - 便捷调优与推理NLP Transformer模型
GithubHappy TransformerNLP开源项目文本分类文本生成词预测
Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。
spacy-transformers - 在 spaCy 中使用 BERT、XLNet 和 GPT-2 等预训练转换器
BERTGPT-2GithubXLNetspaCytransformers开源项目
spacy-transformers通过Hugging Face的transformers实现预训练模型如BERT、XLNet和GPT-2的集成,提升spaCy的功能。支持多任务学习、转换器输出自动对齐等,兼容Python 3.6以上版本,需要PyTorch v1.5+和spaCy v3.0+。
transformer-models - MATLAB深度学习变换器模型实现库
BERTGithubMATLABTransformer开源项目深度学习自然语言处理
该项目提供MATLAB环境下的多种深度学习变换器模型实现,包括BERT、FinBERT和GPT-2。支持文本分类、情感分析、掩码标记预测和文本摘要等自然语言处理任务。项目特点包括预训练模型加载、模型微调、详细示例和灵活API,可用于研究和实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号