Project Icon

torchMoji

基于表情符号的情感分析深度学习模型

TorchMoji是PyTorch实现的DeepMoji模型,通过分析12亿条带表情符号的推文来理解语言表达情感的方式。该模型利用迁移学习在多个情感相关的文本建模任务中实现了优秀性能。项目包含预训练模型、数据处理工具和示例代码,方便研究者和开发者将情感分析应用于各种文本理解任务。TorchMoji模型可用于情感分类、情感强度预测和讽刺检测等任务,为自然语言处理研究和应用提供了有力工具。

DeepMoji - 情感分析模型,基于12亿推文训练,支持迁移学习与多情感预测
DeepMojiGithubKerastorchMoji开源项目情感分析机器学习
DeepMoji是一个情感分析模型,基于12亿推文数据训练,可通过迁移学习在多种情感任务中表现出色。项目包含代码示例和预训练模型,兼容Python 2.7和Keras框架,适用于情感预测和文本编码。还提供了PyTorch实现,用户可使用不同模块进行数据处理、模型微调和测试。
pytorch-sentiment-neuron - Pytorch版本的情感神经元实现情感分析与文本生成
Githubcudamlstm_ns.ptpython 3.5pytorchsentiment开源项目
项目pytorch-sentiment-neuron基于Pytorch,实现了利用情感神经元进行情感分析和文本生成。用户可以通过预设模型文件和简单的命令行操作生成文本并进行情感分析,lm.py文件还允许在新数据上重新训练模型。该项目依赖Pytorch、Cuda和Python 3.5,适用于自然语言处理和情感分析领域的研究人员和开发者。
Emojinator - 基于机器学习的手势表情识别与分类
EmojinatorGithub开源项目手势识别机器学习电子信息表情符号
Emojinator项目通过机器学习技术提供不同手势表情的识别和分类解决方案。项目包含多个版本(如Emojinator 2.0和3.0),有详细的文件组织结构和创建手势及训练模型的代码。特别适合需处理电子消息和网页表情符号的应用场景,欢迎开发者们尝试使用。
emotion-english - 基于自然语言处理的20类情感识别模型
GithubHugging FaceHuggingface开源项目情感分类文本分析机器学习模型自然语言处理
emotion-english项目是一个基于transformers库的文本分类模型,可识别20种不同情感。该模型支持从愤怒、好奇到悲伤、欢乐等多样化情感识别,易于集成到各类自然语言处理应用中。这一工具为情感分析任务提供了精确而全面的解决方案,适用于需要深入理解文本情感的各种场景。
sentiment-analysis - 多种中文情感分析方法及实现途径
GithubSentiment Analysis开源项目情感分析文本分类深度学习自然语言处理
该页面介绍了中文情感分析的三种类型:基于情感词典、传统机器学习和深度学习的方法,并展示了四种实现方式:词典法、Bayes法、ALBERT与TextCNN结合及其emoji扩展。适合自然语言处理和文本分类爱好者深入了解情感分析的实现手段。
bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
GithubHuggingfacePyTorch Lightningbert-base-uncased-emotion开源项目情感分析情感类别数据集模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。
pytorch-sentiment-analysis - 使用PyTorch进行电影评论情感分析的教程
GithubPyTorchPython 3.9开源项目情感分析教程神经网络
该开源项目提供了一系列教程,使用PyTorch实现序列分类模型,主要用于从电影评论中预测情感。课程内容包括神经词包模型、递归神经网络(RNN)、卷积神经网络(CNN)和Transformer模型的理论与实践。此外,还讲解了如何使用torchtext库简化数据加载和预处理。如果有任何疑问或反馈,可以随时通过提交问题进行交流。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
dl-for-emo-tts - 通过深度学习实现情感语音合成
GithubTacotron优化器开源项目情感语音合成数据集深度学习
项目通过深度学习实现情感语音合成,包括Tacotron和DCTTS模型的应用。详细介绍了使用的数据集、相关文献和多种模型微调策略,如调整学习率和冻结网络层。尽管面临情感数据集有限的问题,但实验验证了改进方案对低资源情感TTS传递学习的有效性。
conv-emotion - 会话情感识别技术及最新数据集与模型更新
COSMICDialogueGCNGithubRECCONTL-ERCemotion recognition开源项目
本页面介绍了会话情感识别技术,包括用于识别会话情感的多种基于PyTorch和TensorFlow的模型,如COSMIC、TL-ERC和DialogueGCN。还提供了最新的多模态多方对话数据集和相关基准数据集,并介绍了识别会话情感原因和对话生成的技术。这些技术通过建模对方状态和跨人际依赖关系来实现情感识别。最新更新包括M2H2数据集和相关基线模型,并链接至其他重要项目和研究。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号