Project Icon

torchMoji

基于表情符号的情感分析深度学习模型

TorchMoji是PyTorch实现的DeepMoji模型,通过分析12亿条带表情符号的推文来理解语言表达情感的方式。该模型利用迁移学习在多个情感相关的文本建模任务中实现了优秀性能。项目包含预训练模型、数据处理工具和示例代码,方便研究者和开发者将情感分析应用于各种文本理解任务。TorchMoji模型可用于情感分类、情感强度预测和讽刺检测等任务,为自然语言处理研究和应用提供了有力工具。

soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
distilbert-base-uncased-emotion - DistilBERT情感分析模型:小巧快速且准确
DistilBERTGithubHugging FaceHuggingface开源项目情感分析文本分类模型自然语言处理
这是一个基于DistilBERT的情感分析模型,体积比BERT小40%,速度更快,同时保持93.8%的准确率。模型可将文本分类为6种情感,每秒处理398.69个样本,性能优于BERT、RoBERTa和ALBERT同类模型。该模型采用情感数据集微调,通过简单pipeline即可快速部署使用。
bert-base-arabic-finetuned-emotion - bert-base-arabic 模型在情感识别中的应用与优化
GithubHuggingfaceTransformersbert-base-arabic-finetuned-emotion开源项目情感检测文本分类模型阿拉伯文本
本项目展示了一种基于bert-base-arabic的微调情感检测模型,在emotone_ar数据集上实现了74%的准确率和F1分数。该模型通过Transformer技术增强了情感分析能力,适用于阿拉伯语文本处理。用户可以在Hugging Face平台找到此预训练模型,并应用于其自然语言处理任务。
rubert-tiny2-russian-emotion-detection - RuBERT-tiny2模型实现高精度俄语情感分析
AniemoreBERTGithubHuggingface俄语多标签分类开源项目情感检测模型
该项目开发了基于RuBERT-tiny2架构的俄语文本情感分析模型,可识别7种情感类别。模型在CEDR M7数据集上实现85%的多标签准确率和76%的单标签准确率。项目提供Python接口便于集成,同时开源了功能全面的Aniemore软件包。这一解决方案为俄语文本的情感分析任务提供了高效准确的工具支持。
twitter-roberta-base-sentiment - RoBERTa模型实现Twitter推文情感分析
GithubHuggingfaceTweetEvalTwitterroBERTa开源项目情感分析模型自然语言处理
这是一个基于RoBERTa-base的Twitter情感分析模型,通过5800万条推文训练和TweetEval基准微调而成。模型可将英文推文分类为负面、中性和正面三种情感。项目提供了包含文本预处理、模型加载和情感预测的使用示例。此外,还有一个基于更多最新推文训练的改进版本,可提供更精确的情感分析。该开源项目为自然语言处理研究者和开发者提供了实用的Twitter情感分析工具。
emoji - 便捷的表情符号搜索和表达工具
GitHubGithubemoji关键词搜索开源项目表情符号
Emoji Finder是一款开源的表情符号搜索工具,支持通过关键词快速查找所需的emoji。该工具不仅可用于单个emoji搜索,还能帮助用户讲述故事或表达复杂情感。Emoji Finder提供分组浏览功能,尤其突出食物类emoji的展示。目前收录近900个emoji,并持续接受社区贡献以扩充关键词库,不断优化搜索体验。访问https://emoji.muan.co/即可使用该工具。
TweetEmote - 智能Twitter助手 让推文更具表现力
AI工具AI生成内容TweetEmoteTwitter优化情感表达社交媒体工具
TweetEmote是一款智能Twitter助手,为用户提供多样化的情感和风格选择,用于创作富有表现力的推文、回复和文章线程。这款工具不仅能提升Twitter互动,还可用于生成博客标题和个人信息。目前已有超过1000名社交媒体影响者使用TweetEmote,帮助他们节省时间,创作出更吸引人的内容。
japanese-sentiment-analysis - 基于chABSA数据集的日语情感分析模型,具有高准确率和F1分数
GithubHuggingfacejapanese-sentiment-analysis开源项目情感分析数据集模型模型训练高精度
此模型基于chABSA数据集构建,专为日语情感分析设计,具有极高的准确率和F1得分。使用transformers和Pytorch进行训练,可通过Python API进行访问和集成。
pytorch-llama - 基于PyTorch的LLaMA 2模型实现
GithubLLaMA 2PyTorch人工智能开源项目深度学习自然语言处理
pytorch-llama项目提供了LLaMA 2模型的PyTorch实现。该项目展示了使用PyTorch框架构建大型语言模型的过程,为开发者提供了理解和定制LLaMA 2的学习资源。通过这个项目,研究人员和工程师可以深入了解LLaMA 2的工作原理,并在此基础上进行进一步的实验和创新。
twitter-roberta-base-emotion-multilabel-latest - 精确识别推文情绪的多标签分类模型
GithubHuggingfacetweetnlptwitter-roberta-base-emotion-multilabel-latest多标签分类开源项目情感分析机器学习模型
该项目微调了cardiffnlp/twitter-roberta-base-2022-154m模型,专注于SemEval 2018情感分析任务,显著增强推文的多标签情绪分类能力。模型在测试集上的F1 micro为0.7169,F1 macro为0.5464,是推文情感分析的理想选择。适用于tweetnlp和transformers中的文本分类任务,支持通过Python加载工具进行灵活使用,有助于社交媒体情感解析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号