Project Icon

QATM_pytorch

基于PyTorch的质量感知模板匹配算法

QATM是一种质量感知模板匹配算法的PyTorch实现。这个开源项目提供了完整的代码实现,包括依赖项、使用说明和演示结果。它支持GPU加速,可用于图像识别和对象定位等计算机视觉任务。用户可以自定义样本图像和模板图像,项目展示了算法在多种模板上的匹配效果。

Person_reID_baseline_pytorch - 小巧、友好、强大的 pytorch 工具
GPUGithubPytorch ReID对象识别开源项目教程深度学习
Pytorch ReID是一个高效且易用的对象重识别代码库,支持多种先进的模型与损失函数,如ResNet、Swin Transformer和Circle Loss。该项目自2017年起持续更新,拥有详细的教程与训练评估功能,性能在多篇顶级会议论文中得到验证,适合各种经验水平的用户使用。
mmcv - OpenMMLab开源计算机视觉基础库
GithubMMCVOpenMMLabPyTorch开源项目深度学习计算机视觉
MMCV是一个开源的计算机视觉基础库,提供图像和视频处理、数据转换、CNN架构等功能。支持多平台,包括Linux、Windows和macOS。库中包含高质量的CPU和CUDA操作实现,并提供完整版和精简版两种安装选项。MMCV需要Python 3.7+环境,与PyTorch深度学习框架兼容。
vector-quantize-pytorch - Pytorch向量量化库,可应用于图像和音乐生成
DeepmindGithubJukeboxOpenAIVQ-VAE-2Vector Quantization开源项目
本向量量化库来源于Deepmind的TensorFlow实现,并转化为Pytorch库,使用指数移动平均法来更新字典。它在高质量图像(如VQ-VAE-2)和音乐(如Jukebox)生成中已取得成功,支持多种残差VQ方法、代码簿初始化和正则化,显著提升了量化效果和稳定性。
AITemplate - 开源高性能深度学习推理框架
AITemplateGPU加速Github开源项目推理服务模型转换深度神经网络
AITemplate是一个开源Python框架,能将深度学习模型转换为CUDA或HIP C++代码,实现高效推理。它支持NVIDIA和AMD GPU,提供接近理论峰值的fp16性能。该框架特点包括独立运行无需第三方库、独特的算子融合技术、与PyTorch兼容以及易于扩展。AITemplate支持ResNet、BERT和Stable Diffusion等多种主流模型。
PyTorch-VAE - PyTorch中多种变分自编码器的实现与训练示例
GithubPyTorchPyTorch VAE变分自编码器图像生成开源项目深度学习
PyTorch-VAE项目实现了多种变分自编码器(VAE),专注于结果的可重复性,包括从Vanilla VAE到VQ-VAE的众多模型。所有模型都在CelebA数据集上训练,确保一致的对比结果。代码简洁易用,支持PyTorch和PyTorch Lightning,适合研究人员和开发者快速构建、调试和优化VAE模型。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
deep-text-recognition-benchmark - 基于深度学习方法的文本识别
GithubPyTorch场景文本识别开源项目数据集模型分析深度学习
该项目是一个开源的场景文本识别框架,通过四阶段的官方PyTorch实现,支持现有大多数STR模型。它允许在统一的数据集上,评估各个模块的性能表现,包括准确性、速度和内存需求,并已被多个国际竞赛验证。用户可使用预训练模型进行测试,或进行更深入研究。
soft-moe-pytorch - PyTorch 实现的软专家混合模型框架
GithubPytorchSoft MoE专家混合开源项目深度学习神经网络
soft-moe-pytorch 项目实现了基于 PyTorch 的软专家混合 (Soft MoE) 模型。该模型支持非自回归编码器,可用于文本到图像等任务。项目特点包括灵活设置专家数量、动态分配插槽,以及与 Transformer 架构兼容。这一工具为深度学习研究和开发提供了高效、可扩展的 MoE 模型实现,有助于提升模型性能。
SASRec.pytorch - 基于PyTorch的SASRec模型实现
GithubPyTorchSASRec序列推荐开源项目推荐系统自注意力机制
SASRec.pytorch项目提供了自注意力序列推荐模型的PyTorch实现。相比原始TensorFlow版本,该项目优化了训练和推理流程,修复了正位置嵌入等问题。代码包含模型训练、评估和推理示例,并在MovieLens-1M数据集上展示了NDCG@10和HR@10指标的性能。项目适用于需要在PyTorch环境中研究或应用SASRec模型的人员,为推荐系统领域提供了有价值的开源资源。
gta - 几何感知注意力机制增强多视图Transformer性能
GTAGithub几何感知注意力多视图Transformer开源项目神经渲染计算机视觉
GTA是一种创新的几何感知注意力机制,旨在提升多视图Transformer的表达能力。这项技术不仅适用于新视角合成和3D场景重建等多视图任务,还可应用于图像生成等2D任务。项目提供了GTA在CLEVR-TR和MSN-Hard数据集上的官方实现代码,并展示了其在ImageNet图像生成中的应用。通过整合几何信息,GTA使Transformer更有效地处理3D空间关系,从而显著提高多视图任务的性能表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号