Project Icon

datmo

2D激光雷达移动物体检测跟踪系统

datmo是一款为配备2D激光雷达的机器人平台设计的移动物体检测跟踪系统。它可准确估算矩形物体的位置、速度、方向和尺寸。系统使用自适应断点检测算法聚类,搜索式矩形拟合算法提取L形,并结合卡尔曼滤波器进行运动和形状跟踪。datmo兼容ROS,提供可视化功能,适用于自动驾驶和移动机器人领域的物体跟踪。

Anti-UAV - 无人机目标检测与追踪开源项目
Anti-UAVGithub开源项目数据集无人机跟踪目标检测计算机视觉
Anti-UAV是一个开源项目,致力于在复杂环境中检测和追踪无人机目标。该项目提供新的数据集、评估指标和基线方法,支持RGB和红外视频输入。数据集包含多尺度无人机的高质量视频序列和密集标注。Anti-UAV旨在推动无人机检测追踪技术发展,可应用于区域安全防护等领域。
pytracking - 基于PyTorch的开源视觉目标跟踪和视频对象分割框架
GithubPyTorch开源项目深度学习视觉目标跟踪视频目标分割计算机视觉
PyTracking是基于PyTorch的开源视觉目标跟踪和视频对象分割框架。它实现了多个先进的跟踪算法,如TaMOs、RTS和ToMP,并提供完整的训练代码和预训练模型。该框架包含用于实现和评估视觉跟踪器的库,涵盖常用数据集、性能分析脚本和通用构建模块。其LTR训练框架支持多种跟踪网络的训练,提供丰富的数据集和功能。
3D-deformable-attention - 3D可变形注意力技术提升自动驾驶物体检测精度
3D目标检测BEVFormerDFA3DGithub开源项目深度估计特征提升
3D-deformable-attention项目提出了3D可变形注意力(DFA3D)操作符,用于2D到3D特征提升。该方法首先利用深度估计将2D特征扩展到3D空间,再通过DFA3D聚合3D特征。这种方法缓解了深度歧义问题,并支持逐层特征细化。在多个基准测试中,DFA3D平均提高1.41 mAP,高质量深度信息下最高提升15.1 mAP。研究结果显示DFA3D在自动驾驶3D目标检测等任务中具有较大潜力。
vision3d - PyTorch驱动的开源激光雷达感知库
3D检测GithubLIDAR感知PV-RCNNPyTorchSECOND模型开源项目
Vision 3D是一个基于PyTorch的开源库,专注于激光雷达感知领域。该项目以代码简洁性为核心,便于扩展新模型和数据集。目前已实现SECOND算法,并部分完成PV-RCNN。虽然开发已暂停,但项目仍提供详细文档和示例,支持研究人员和开发者在3D目标检测领域的应用。Vision 3D作为开源工具,欢迎社区贡献,为激光雷达感知研究提供了有价值的资源。
siam-mot - 区域基的多目标追踪网络
CVPRGithubSiamMOT多目标跟踪开源项目深度学习运动模型
SiamMOT是一种基于区域的连体多目标追踪网络,通过在帧间估算对象实例的运动,实现目标检测和关联。项目展示了显式和隐式运动建模的重要性,显著提升了在MOT17、TAO-person和Caltech Roadside Pedestrians数据集上的性能,且在HiEve数据集上超越了ACM MM'20 HiEve Grand Challenge的获胜者。SiamMOT在单个现代GPU上以每秒17帧的速度运行,支持对人或人和车辆的联合追踪,并提供丰富的预训练模型供用户使用。
ILCC - 3D激光雷达与相机自动外参标定方法
3D重建GithubLiDAR开源项目点云处理相机标定计算机视觉
ILCC是一个开源项目,提供基于激光反射强度的3D激光雷达和相机自动外参标定方法。项目功能包括点云分割、棋盘格检测、角点提取和外参优化,支持多种激光雷达型号。ILCC适用于全景和单目相机标定,提供3D点云可视化工具。项目附有使用说明和示例数据,便于研究人员使用。
mmdetection - MMDetection:基于PyTorch的高效目标检测工具箱
GithubMM-Grounding-DINOMMDetectionOpenMMLabPyTorchRTMDet开源项目
MMDetection是一款专为目标检测、实例分割和全景分割任务设计的工具箱,采用模块化设计,支持多种检测任务,具备高效GPU运算能力。其性能与其他顶级代码库相媲美,且不断保持前沿。结合COCO挑战赛冠军经验,MMDetection提供先进的检测结果,并与MMEngine和MMCV无缝整合,进一步提升研究和应用效果。最新的RTMDet模型在参数-准确率优化及实时实例分割和旋转目标检测上表现出色。
rtdetr_r50vd - 全新RT-DETR模型提升精度与速度的实时物体检测方案
GithubHuggingfaceRT-DETRYOLO变压器实时应用开源项目模型目标检测
RT-DETR是面向实时物体检测的创新模型,通过混合编码器和最小化不确定性查询选择,实现高精度和快速检测。模型在COCO和Objects365数据集训练,支持速度调整以适应多种场景。RT-DETR-R50/R101在COCO上分别取得53.1%和54.3%的平均精度,在T4 GPU上达到108和74 FPS,性能超过YOLO模型。
Datature - 一体化AI视觉平台简化企业计算机视觉应用开发
AI工具人工智能数据标注模型训练模型部署计算机视觉
Datature是一个无代码计算机视觉MLOps平台,提供数据管理、标注、训练和部署的全流程解决方案。支持图像分类、目标检测和分割等任务,具备AI辅助标注和自动模型训练功能,可显著提高开发效率。适用于医疗、零售和智慧城市等多个领域,有助于快速开发AI视觉应用。平台还提供开发工具,支持大规模部署和集成,是一个功能完备的计算机视觉开发平台。
Fast-BEV - 新一代鸟瞰视角感知系统
Fast-BEVGithub开源项目深度学习自动驾驶计算机视觉鸟瞰图感知
Fast-BEV是一种先进的鸟瞰视角感知系统,专注于3D目标检测和BEV语义分割。该项目针对自动驾驶等应用场景进行了优化,提供多种模型配置和CUDA、TensorRT加速支持。Fast-BEV不仅在性能和速度方面表现卓越,还提供了完整的安装指南、数据准备流程和训练方法,为研究人员和开发者提供了强大的工具。作为领先的感知算法和计算机视觉解决方案,Fast-BEV为鸟瞰视角感知任务设立了新的标准。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号