Project Icon

datmo

2D激光雷达移动物体检测跟踪系统

datmo是一款为配备2D激光雷达的机器人平台设计的移动物体检测跟踪系统。它可准确估算矩形物体的位置、速度、方向和尺寸。系统使用自适应断点检测算法聚类,搜索式矩形拟合算法提取L形,并结合卡尔曼滤波器进行运动和形状跟踪。datmo兼容ROS,提供可视化功能,适用于自动驾驶和移动机器人领域的物体跟踪。

MVision - 前沿机器视觉与智能算法技术集合
GithubSLAM技术开源项目无人驾驶机器视觉深度学习计算机视觉
MVision专注于探索机器视觉与人工智能的前沿研究和应用。该平台涵盖自然语言处理、深度学习和计算机视觉课程等多个方面,提供如ICDM、NIPS等重要会议的资源链接和最新机器学习研究文献。同时,MVision也关注无人驾驶、动态物体检测等实际应用领域,致力于提供全面的学习和实践资源,以推动技术进步和行业发展。
mmyolo - YOLO算法与实时对象识别工具包
GithubMMYOLOOpenMMLabYOLO系列算法实例分割开源项目目标检测
MMYOLO是一个基于PyTorch和MMDetection的开源工具包,专注于YOLO系列算法,适用于对象检测和旋转对象检测任务。该项目提供统一的基准测试、详细文档和模块化设计,便于用户构建和扩展模型。支持YOLOv5实例分割和YOLOX-Pose等功能,显著提升训练速度,并在RTMDet模型上实现了先进的性能。
dreamscene4d - 从单目视频生成动态多目标3D场景的突破性技术
3D场景生成DreamScene4DGithub多目标跟踪开源项目视频处理计算机视觉
DreamScene4D是一种从单目视频生成动态多目标3D场景的开源技术。它采用3D高斯和形变优化方法,能处理不同长度的视频和多个目标。项目提供自动化和分阶段优化脚本,支持处理有遮挡和无遮挡的视频。DreamScene4D在复杂场景和长视频序列处理方面表现优异,为计算机视觉和图形学研究提供了新思路。
RT-DETR - 超越YOLO的实时目标检测算法领域突破
CVPR 2024GithubRT-DETR实时目标检测开源项目深度学习物体识别
RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。
speed-camera - 基于计算机视觉的开源运动目标速度测量系统
GithubOpenCVPythonSpeed Camera开源项目树莓派物体运动追踪
speed-camera是一个基于Python和OpenCV的开源运动目标速度测量系统。它支持树莓派、Windows和Unix平台,兼容多种摄像头,可自动检测和跟踪画面中最大移动物体并计算速度。系统提供灵活配置、数据记录和Web界面,适用于交通监控等场景。此外还集成了数据分析、图表生成等管理工具,方便用户进行后续处理。
MVDet - 基于特征透视变换的多视角行人检测系统
GithubMVDetMultiviewX数据集多视角检测开源项目特征透视变换行人检测
MVDet是一个开源的多视角行人检测系统,采用特征透视变换技术提高检测精度。项目包含自主开发的合成数据集MultiviewX,为相关研究提供数据支持。在Wildtrack数据集上,MVDet达到88.2%的MODA。项目开放源代码和预训练模型,便于研究人员进行深入研究。
DLTA-AI - AI赋能的数据标注、追踪和注释工具
DLTA-AIGithub分割模型开源项目数据标注机器学习目标跟踪
一款集成先进计算机视觉模型的工具,简化图像数据集创建,支持零样本分割和目标跟踪,提供多种模型选择与自定义导出格式,无缝结合Labelme,提升标注效率。
iros20-6d-pose-tracking - 6D姿态跟踪的优化方案,提高机器人操控和视觉领域的精度和效率
6D姿态跟踪GithubRGB-D图像iros20-6d-pose-trackingse(3)-TrackNet开源项目机器人操作
se(3)-TrackNet通过校准合成图像残差,实现视频序列中的6D姿态跟踪,适用领域包括机器人操控和增强现实。其神经网络架构有效减少域迁移,并采用Lie Algebra实现三维定向表示,即使仅使用合成数据训练也能在真实图像中工作。研究表明,在遮挡条件下,该方法提供稳定和精准的姿态估计,计算效率高达90.9Hz。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
tram - 从非受控视频中重建3D人体全局轨迹和动作
3D人体捕捉GithubTRAM开源项目深度学习视频处理计算机视觉
TRAM是一个开源的4D人体捕捉系统,专门用于从非受控视频中估计3D人体的全局轨迹和动作。该系统集成了目标跟踪、SLAM和4D人体捕捉技术,能在世界坐标系中精确重建人体运动。TRAM的工作流程包括相机位姿估计、人体检测跟踪和4D人体重建,为复杂场景中的人体运动分析提供了有力工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号