Project Icon

PySODEvalToolkit

Python图像分割评估工具包

PySODEvalToolkit是一个Python工具包,用于评估图像灰度和二值分割算法的性能。它提供多种评估指标如MAE、F-measure和E-measure,适用于显著性目标检测和伪装目标检测等任务。该工具支持批量评估多个数据集和方法,可生成PR曲线等可视化结果,并具备多线程加速和结果导出功能。PySODEvalToolkit为研究人员提供了全面而高效的图像分割评估解决方案。

PaddleSeg - 高性能端到端图像分割工具套件,支持从训练到部署
AI套件GithubPaddleSegPaddleX图像分割开源项目飞桨
PaddleSeg是一款基于飞桨PaddlePaddle的图像分割套件,内含超过45种模型算法和140多个预训练模型,支持语义分割、交互式分割、Matting及全景分割。应用场景广泛,包括医疗、工业、遥感等。具备高精度、高性能、模块化以及全流程特性,兼容多个操作系统如Linux、Windows、MacOS,适用于多种硬件的训练和部署。
IQA-PyTorch - 纯Python和PyTorch图像质量评估工具箱
GPU加速GithubIQAPyTorch图像质量评估开源项目纯Python
IQA-PyTorch是一款基于纯Python和PyTorch的图像质量评估工具箱,支持多种主流全参考和无参考评估指标。通过GPU加速,评估速度优于Matlab实现,用户可通过命令行或代码进行图像质量评估。该工具箱还支持作为损失函数使用,提供便捷的基准数据集下载和详细文档,适用于评估各种场景。定期更新及多种预训练模型让它成为图像质量评估的理想选择。详情请查阅文档和示例代码。
superpixel-benchmark - 超像素算法的全面评估与性能比较
GithubSuperpixels图像处理开源项目数据集算法比较计算机视觉
该项目是一款全面的超像素算法评估平台,评估28种算法在5个数据集上的性能。通过参数优化和使用边界召回率、分割错误率、解释方差等指标,实现了客观和公平的比较。项目包含Docker实现、平均指标计算工具和详细文档,适用于研究人员和开发者进行深入研究与应用。
PySceneDetect - 自动化视频场景分析与切割工具
GithubPySceneDetectPython库场景分析工具开源项目视频剪辑检测视频处理
作为一个开源项目,PySceneDetect集成了多种视频场景检测算法,包括内容感知和自适应检测。它不仅提供命令行接口,还支持Python API,方便开发者集成到现有工作流程中。该工具能够自动识别视频中的场景变化,实现视频分割、关键帧提取和时间码分析等功能,为视频编辑、内容分析和自动化处理提供了有力支持。
py-motmetrics - 多目标跟踪性能评估Python库
GithubMOT指标Python库多目标跟踪开源项目性能评估数据分析
py-motmetrics是一个评估多目标跟踪(MOT)性能的Python库。它实现了CLEAR-MOT和ID等评估指标,支持多种距离度量,可跟踪每帧事件,并提供灵活的求解器后端。该库兼容MOTChallenge基准,使用pandas进行数据分析,易于扩展。py-motmetrics为研究人员和开发者提供了全面评估和比较多目标跟踪算法性能的工具。
medpy - 医学图像处理的Python库和工具集
GithubMedPyPython库医学图像处理开源软件开源项目数据分析
MedPy是一个开源的医学图像处理Python库,专注于高维图像处理。它提供丰富的功能和脚本集合,支持PyPI和Conda-Forge安装。MedPy具有完善的文档和教程,适用于Python 3及以上版本。该项目在GitHub上维护,为医学图像处理研究和应用提供了有力支持。MedPy支持医学图像的分割、配准、滤波等多种处理任务,广泛应用于放射学、神经影像学等医学领域。
evaluate - 多框架兼容的机器学习评估工具库
EvaluateGithub开源项目指标机器学习模型比较评估
evaluate是一个开源的机器学习评估工具库,支持Numpy、Pandas、PyTorch、TensorFlow和JAX等多种框架。它提供了数十种涵盖自然语言处理和计算机视觉等领域的常用评估指标。用户可以使用evaluate进行模型评估、性能对比和结果报告。该库还支持创建新的评估模块并推送至Hugging Face Hub,便于比较不同指标的输出。evaluate的其他特点包括类型检查、指标卡片和社区指标功能,为研究人员和开发者提供了全面的模型评估支持。
pylabel - 图像数据集转换与标注工具
GithubPyLabelPython包图像数据集开源项目注释转换目标检测
PyLabel是一个Python包,可用于为计算机视觉模型(如PyTorch和YOLOv5)准备图像数据集。该工具支持在不同标注格式之间进行转换(如COCO到YOLO),并在Jupyter notebook中提供AI辅助标注功能。PyLabel允许使用单行代码转换标注格式,将注释数据存储在pandas DataFrame中便于分析,按类分层将数据集分为训练集、测试集和验证集,并支持带边界框的图像可视化,从而使图像数据处理更高效便捷。
common_metrics_on_video_quality - 多指标视频质量评估工具包
FVDGithubLPIPSPSNRSSIM开源项目视频质量评估
这是一个开源项目,提供了计算FVD、SSIM、LPIPS和PSNR等多种视频质量评估指标的工具包。支持灰度和RGB视频格式,适用于生成模型和预测模型的视频质量评估。项目在Ubuntu系统上运行稳定,并提供了详细的使用说明和注意事项。研究人员和开发者可以利用此工具包进行便捷的视频质量分析。
sklearn-evaluation - 机器学习模型评估工具
GithubJupyter notebookPythonsklearn-evaluation开源项目机器学习模型评估
sklearn-evaluation是一款简便的机器学习模型评估工具,支持绘制混淆矩阵、特征重要性、精准率-召回率、ROC曲线、肘部曲线和轮廓图等多种图表,并生成HTML格式的评估报告。该工具还可使用本地SQLite数据库进行实验跟踪,分析Jupyter notebook输出,并通过SQL查询notebook数据。兼容Python 3.7及更高版本,适用于Linux、macOS和Windows平台,提供全面的模型评估功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号