Project Icon

control_v11e_sd15_ip2p

更好地控制扩散模型的图像处理能力

本项目利用ControlNet v1.1提供了一种神经网络结构,能够通过附加条件控制预训练的大型扩散模型,与Stable Diffusion兼容。其支持指令化像素到像素的控制,通过边缘图、分割图和关键点等条件输入丰富图像生成方式。即便在小规模数据集下,ControlNet也能在个人设备上快速训练,相关源码及文档可在HuggingFace平台获取,适用于多种图像生成任务,提升图像处理灵活性。

ddpm-ema-celebahq-256 - 无条件图像生成的高效去噪扩散模型
CIFAR10DDPMGithubHuggingfaceProgressiveGAN噪声调度器图像合成开源项目模型
项目通过去噪扩散概率模型实现高质量无条件图像生成,结合无平衡态热力学概念,在CIFAR10和256x256 LSUN数据集上取得了优异的Inception和FID评分。用户可以灵活选择噪声调度器以平衡生成质量与速度,该模型也支持渐进式无损压缩,作为自动回归解码的推广。详情请参照官方推理与训练示例。
stable-diffusion-2-inpainting - 基于扩散模型的高分辨率图像生成和修复工具
GithubHuggingfaceStable Diffusion人工智能图像生成开源项目模型深度学习计算机视觉
stable-diffusion-2-inpainting是一个基于扩散模型的图像生成和修复工具。该模型能根据文本提示生成高质量图像,并支持高分辨率图像修复。它采用LAMA的掩码生成策略,结合掩码图像的VAE潜在表示作为额外条件。该模型在英语提示下效果最佳,适用于艺术创作、设计和研究等领域。然而,它也存在一些局限性,如无法生成可读文本,对复杂任务表现欠佳。使用时应注意避免生成有害或带有偏见的内容。
diffae - 基于扩散模型的自编码器框架实现图像生成与编辑
Diffusion AutoencodersGithub图像处理开源项目深度学习生成模型计算机视觉
diffae项目实现了基于扩散模型的自编码器框架,用于高质量图像的生成和编辑。该项目提供多个预训练模型,支持FFHQ、LSUN等数据集,实现了无条件生成、图像操作和插值等功能。项目包含使用说明、模型检查点和针对不同数据集的训练脚本,为图像生成和编辑研究提供了完整的工具链。
clip-guided-diffusion - 文本生成图像,多功能扩散模型
AI绘图CLIP Guided DiffusionGithubKatherine Crowsonpyglide图像生成开源项目
CLIP Guided Diffusion项目提供文本生成图像功能,支持多种参数和提示词权重设置。此项目采用高效扩散模型,通过命令行或Python接口操作,支持GPU加速,提供丰富的图像尺寸和调校选项,适合生成高质量多样化的视觉内容。
LLM-groundedDiffusion - 优化文本到图像合成的提示理解能力
GPT-4GithubHuggingFaceLLM-grounded DiffusionStable DiffusionTMLR开源项目
本项目通过将大型语言模型(LLM)与文本到图像扩散模型结合,提高了提示理解能力。LLM负责解析文本请求,生成中间表示如图像布局,最终通过稳定扩散模型生成高质量图像。项目支持多种生成方法和开源模型,用户可自行设置实现自托管,从而节约API调用成本。项目更新频繁,包括支持高分辨率生成和集成SDXL精炼器等功能。
q-diffusion - 扩散模型的创新量化方法
GithubQ-Diffusion图像生成开源项目扩散模型深度学习量化
Q-Diffusion是一种针对扩散模型的后训练量化方法。它能将无条件扩散模型压缩至4位精度,同时保持接近原模型的性能。该方法通过时间步感知校准和分离捷径量化技术解决了扩散模型量化的主要难题。Q-Diffusion不仅适用于无条件图像生成,还可用于文本引导的图像生成,首次实现了4位权重下的高质量生成效果。这一技术为扩散模型的高效实现开辟了新途径。
DiffusionFromScratch - 实践教程:从零构建和训练稳定扩散模型
GithubStable DiffusionUNet图像生成开源项目教程机器学习
DiffusionFromScratch是一个开源项目,提供精简代码库用于重建稳定扩散模型。项目特点包括单Python脚本实现、支持MNIST和CelebA数据集训练,以及提供多个Colab笔记本。这些笔记本涵盖模型架构探索、UNet模型构建和基于文本生成MNIST图像等内容。项目还展示了演示输出和音乐视频生成示例,为学习稳定扩散模型提供了实用资源。
stable-diffusion-inpainting - 开源AI模型实现图像修复和高质量生成
AI绘画GithubHuggingfaceStable Diffusion修复绘画图像生成开源项目文本转图像模型
Stable Diffusion Inpainting是一个开源的文本到图像生成和修复模型。它基于潜在扩散技术,可根据文本描述生成高质量图像,并能对现有图像进行智能修复。该模型在LAION-Aesthetics数据集上训练,支持512x512分辨率输出。适用于艺术创作、设计等领域,但不应用于生成有害内容。目前主要支持英文输入,其他语言效果可能有限。
CCSR - 改善扩散模型在内容一致超分辨率任务中的稳定性
CCSRGithub图像恢复开源项目扩散模型稳定性超分辨率
CCSR项目专注于提高扩散模型在内容一致超分辨率任务中的稳定性。项目引入全局标准差(G-STD)和局部标准差(L-STD)两个新指标,用于评估基于扩散的方法在超分辨率结果中的图像级和像素级变化。实验表明,CCSR在真实世界和双三次超分辨率任务中均有优异表现,能够生成更稳定、高质量的图像。项目提供开源代码、预训练模型和在线演示,方便研究人员和开发者使用。
StreamDiffusion - 高性能实时AI图像生成框架
AI绘图GithubStreamDiffusion图像处理实时生成开源项目深度学习
StreamDiffusion是一个开源的高性能AI图像生成框架,专为实时交互应用设计。它采用流批处理、残差无分类引导等创新技术,大幅提升了扩散模型的生成速度。在RTX 4090显卡上,使用SD-turbo模型可实现每秒106帧的文生图速度,LCM-LoRA与KohakuV2模型组合也能达到每秒38帧。该项目为开发实时AI图像生成应用提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号