Project Icon

Schedule

图学习研讨会定期分享前沿研究

Schedule是一个图学习研讨会社区,定期邀请相关研究者分享最新成果。涵盖数据高效图学习、时空深度学习、图神经网络表达、芯片设计等热门话题。来自国内外知名机构的学者参与,为图学习研究者提供交流平台。

Practical_DL - 秋季深度学习课程资源与实践指南,适用于学习者和开发者
Deep LearningGithubPyTorch开源项目深度学习神经网络课程
2023秋季深度学习课程,涵盖讲座和实践材料,可在本地或Google Colab完成作业。通过Telegram讨论问题,学习课程包括深度学习基础、技巧及卷积神经网络等,由资深导师提供材料,持续改进。
Neural-Gauge-Fields - 创新3D场景表示实现灵活UV映射与高效渲染
3D重建GithubUV映射三平面投影开源项目神经规范场视图合成
Neural-Gauge-Fields项目提出创新3D场景表示方法,通过学习UV映射和三平面投影实现灵活纹理编辑和高效渲染。项目引入InfoInv技术,提升基于网格和MLP的神经场性能。这一方法为3D视图合成、场景编辑和表面重建提供新工具,在计算机图形学和视觉领域展示应用前景。
Attend-and-Excite - 文本到图像扩散模型中的注意力机制优化
AIAttend-and-ExciteGithubStable Diffusion图像生成开源项目跨注意力
研究表明,当前的文本到图像生成模型在特定语义表达方面存在不足。为解决这一问题,提出了基于注意力机制的语义护理(Generative Semantic Nursing, GSN)方法。此方法通过在推理过程中调整模型的交叉注意单元,使生成的图像更准确地反映输入文本中的多个对象和属性。相比其他方法,该技术在各种文本提示下表现出更高的语义忠实度,并提供详细的实现步骤和代码,以便研究人员进行实验与复现。
Neural-Network-Architecture-Diagrams - 使用diagrams.net创建神经网络模型图
AutoencoderGithubNeural NetworkVGG-16YOLO v1diagrams.net开源项目
本项目使用diagrams.net(也叫draw.io)生成神经网络模型图,帮助用户直观理解不同的神经网络结构。涵盖YOLO v1、VGG-16、Autoencoder等实例,并欢迎贡献新的架构图。无论是初学者还是研究人员,皆可受益于提供的可视化示例。点击查看更多详情,了解如何分享架构图。
DL-Simplified - 为深度学习领域的贡献者提供从入门到高级的项目集
Deep LearningGithubMachine Learning开源开源项目数据分析项目贡献
DL-Simplified 资源库为深度学习领域的贡献者提供从入门到高级的项目集。该库包括按模板组织的数据集、图片、模型文件和依赖。用户可浏览问题区、fork仓库、创建PR等方式参与。深度学习通过多层神经网络处理大量数据,实现不同级别的数据抽象。了解最新的开源活动和参与方法,及项目成就与贡献者。
ai-infra-landscape - 生成式 AI 生态系统基础设施全景图
AI基础设施Github向量搜索开源项目数据可视化生态系统
ai-infra-landscape 项目展示了生成式 AI 生态系统基础设施的全景图,涵盖多个类别和子类别的 AI 基础设施项目。该开源项目支持社区贡献,允许通过 pull request 添加新项目。网站采用 landscape2 工具构建,提供直观的可视化界面,有助于全面了解 AI 基础设施生态系统。
sketch-code - 手绘线框图转HTML代码的深度学习工具
GithubHTML生成SketchCode图像字幕开源项目手绘线框图深度学习
SketchCode使用深度学习将手绘网站线框图转换为工作HTML代码。该项目通过图像字幕架构生成HTML标记,实现手绘线框图的前端代码自动生成。目前作为概念验证,其性能依赖于与核心数据集相似的线框图,但展示了自动化前端开发的潜力。了解更多关于依赖安装、预训练模型使用和模型训练的详细信息。
Open Data Science - 打造全球数据科学和人工智能专业人士交流学习的开放社区
AI工具Open Data Science人工智能数据科学机器学习社区平台
Open Data Science汇聚全球数据科学和人工智能专业人士,提供丰富的学习资源和交流机会。平台涵盖课程、竞赛、项目等多样化内容,用户可参与数据比赛、黑客马拉松等活动,加入各类专题讨论组。作为数据科学领域的重要社区,该平台致力于推动开源合作和知识共享,为从业者提供学习成长和职业发展的机会。
awesome-artificial-intelligence - 工具、课程、图书及更多人工智能资源集合
AI工具AI课程Github人工智能开源项目机器学习深度学习
提供AI工具、课程、图书等丰富资源,帮助初学者和专业人士掌握人工智能领域的必备知识与技能。此项目不仅涵盖学习资源,还包括与人工智能相关的代码、视频教程和组织信息,适用于初学者及需进阶研究的AI专业工具和资料。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号