Project Icon

RT-DETR

超越YOLO的实时目标检测算法领域突破

RT-DETR是一个开源的实时目标检测算法项目,在性能上超越了YOLO系列。它提供多种模型变体,从轻量级R18到大型X模型,适应不同应用需求。在COCO和Objects365数据集上,RT-DETR展现出卓越性能,最高达到56.2mAP和217FPS。项目同时支持PyTorch和PaddlePaddle框架,便于研究和应用。

ARC - 自适应旋转卷积技术提升目标检测准确度
ARCGithub开源项目旋转目标检测物体检测自适应旋转卷积计算机视觉
ARC项目引入自适应旋转卷积操作,用于捕获图像中物体的方向信息。该技术通过旋转卷积核提高了旋转目标检测的性能和效率。项目开源了代码实现、预训练模型和使用说明,为计算机视觉研究提供了有价值的资源。
fast-reid - 重识别方法和工具箱
FastReIDGithubPyTorch人脸识别开源项目模型转化重识别
FastReID是一个研究平台,实现了先进的实例重识别算法,重新编写前一版本(reid strong baseline)而来。该平台支持图像检索和人脸识别等多项任务,具备自动混合精度训练、多GPU分布式训练、模型蒸馏等功能,支持多种骨干网络结构和多个数据集的同时测试。新更新包括支持DG-ReID和Vision Transformer骨干网络。更多信息请参考官方文档。
3D-BoundingBox - 使用深度学习与几何方法,实现高效的3D边界框估计
3D Bounding BoxGithubKittiPyTorchYOLOv3开源项目深度学习
项目提供基于PyTorch的深度学习解决方案,通过结合YOLOv3和2D-3D几何转换,实现高效3D边界框估计。主要功能包括下载预训练权重、通过视频和图像数据进行模型推理和训练,依赖PyTorch和其他深度学习库。项目未来计划是在Kitti数据集上训练自定义YOLO网络和姿态可视化。目前版本每帧处理时间约为0.4秒,并计划进一步提升速度。文档中详细介绍了模型训练步骤及实际应用操作。
SparseBEV - 多摄像头视频中的高性能稀疏3D目标检测技术
GithubICCV 2023PyTorchSparseBEVnuScenes开源项目立体检测
SparseBEV利用多摄像头视频实现高性能稀疏3D目标检测,得到ICCV 2023的认可,并提供PyTorch实现、训练和评估指南。新发布的SparseOcc展示了全稀疏架构支持多种预训练权重和配置文件。用户可使用提供的代码进行可视化和模型优化,实现高效3D检测。兼容不同版本的PyTorch和CUDA,表现卓越。
jetson-inference - 深度学习部署与实时视觉识别
GithubNVIDIA JetsonPyTorchTensorRT实时视觉开源项目深度学习
NVIDIA Jetson设备上的深度学习推理和实时视觉处理库。使用TensorRT优化GPU网络运行,支持C++和Python, 以及PyTorch模型训练。功能包括图像分类、物体检测、语义分割等,适用于多种应用场景,如实时摄像头流和WebRTC网络应用。
tensorflow-yolov3 - 使用TensorFlow 2.0实现的YOLOv3目标检测教程
COCOGithubTensorFlow 2.0VOCYOLOv3开源项目目标检测
本文介绍了使用TensorFlow 2.0实现YOLOv3目标检测的方法,包括快速入门、训练自定义数据集和在VOC数据集上的评估。提供详细的代码示例和步骤说明,帮助开发者轻松训练和应用目标检测模型。文中附有中文博客链接,提供更多学习资源。
a-PyTorch-Tutorial-to-Object-Detection - PyTorch物体检测模型教程与实现
GithubPyTorch单发多框检测卷积神经网络多尺度特征图对象检测开源项目
本教程详细指导如何使用PyTorch实现物体检测模型,包括模型构建、训练、评估和推理等环节。采用高效的单次多框检测(SSD)算法,介绍多尺度特征图、先验框和非极大值抑制等关键概念。适合具备PyTorch和卷积神经网络基础的学习者,教程提供中文翻译版便于理解和应用。
CV - 全面的计算机视觉深度学习模型集合
Github图像分类开源项目深度学习目标检测计算机视觉语义分割
这个项目收集了多个计算机视觉领域的深度学习模型,包括图像分类、目标检测、语义分割和生成模型。项目为每个模型提供论文链接、详细解析和代码实现,涵盖从AlexNet到YOLO系列等经典算法。这是一个面向研究人员和开发者的综合性学习资源,有助于理解和应用先进的计算机视觉技术。
deepdetect - 用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架
APIDeepDetectGithub图像分类开源项目机器学习深度学习
DeepDetect是一个用C++11编写的机器学习API和服务器,支持如Caffe、Tensorflow、Pytorch等多种深度学习框架。它专注于易用性和高性能,支持分类、目标检测、分割、回归等任务,适用于图像、文本和时间序列数据。该工具可自动将模型转换为嵌入式平台(如TensorRT、NCNN),无需数据库,所有数据和模型参数均存储在文件系统中。DeepDetect通过JSON格式通信,提供Python和Javascript客户端,易于集成到现有应用中。
CoDA_NeurIPS2023 - 创新3D目标检测框架实现开放词汇表任务
CoDAGithub开放词汇3D目标检测开源项目深度学习神经网络计算机视觉
CoDA是一个开源的开放词汇表3D目标检测框架,通过协作式新颖框发现和跨模态对齐技术提高对未见类别的检测能力。该项目支持ScanNet和SUN RGB-D数据集,提供完整的代码、预训练模型和数据集。CoDA的创新方法在NeurIPS 2023发表,为3D场景理解研究提供了新的思路。项目基于PyTorch开发,并提供详细的安装和使用指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号