Project Icon

tensorflow-image-models

将PyTorch图像模型移植到TensorFlow的预训练模型库

tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。

Deep-Learning-in-Production - 将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境的介绍
C++GithubPyTorchTensorFlow开源项目深度学习部署
项目详细介绍了如何将PyTorch、TensorFlow、Keras和MXNet等深度学习模型部署至生产环境,包括模型转换、API集成、服务器运作及跨框架策略。这一资源库提供实际细节和案例,帮助开发者全面了解部署流程,并通过Flask、C++、Go等多种技术实现模型应用。
dino-vitb8 - 无需微调,实现高效图像分类的自监督视觉转换器
GithubHuggingfaceImageNet-1kVision Transformer图像分类开源项目模型自监督学习预训练模型
Vision Transformer (ViT)模型通过DINO方法进行的自监督训练在ImageNet-1k数据集上预训练,注重提升图像特征提取,无需微调即可应用于图像分类,兼顾多种下游任务。可根据任务需求选择合适的微调版本。
tf_efficientnet_l2.ns_jft_in1k - EfficientNet架构的大规模图像识别与特征提取模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
基于EfficientNet架构开发的图像分类模型,采用Noisy Student半监督学习方法,结合ImageNet-1k和JFT-300m数据集进行训练。模型支持800x800分辨率输入,包含4.8亿参数,可用于图像分类、特征提取和嵌入向量生成。借助timm库实现模型的快速部署,适用于各类图像识别任务。
deit_base_distilled_patch16_224.fb_in1k - DeiT图像分类模型 结合注意力蒸馏技术
DeiTGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
DeiT_base_distilled_patch16_224.fb_in1k是一个在ImageNet-1k数据集上训练的图像分类模型,采用注意力蒸馏技术优化性能。模型包含8730万个参数,支持224x224像素图像输入。除图像分类外,还可用于特征提取。通过timm库可轻松调用,适用于图像分类和嵌入向量提取。该模型在精度和效率方面表现均衡,可广泛应用于计算机视觉任务。
mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k - 高效图像分类与特征提取模型 支持移动设备应用
GithubHuggingfaceImageNetMobileNetV4timm图像分类开源项目模型预训练模型
MobileNet-V4图像分类模型经过ImageNet-12k预训练和ImageNet-1k精细调整,优化了参数和图像处理能力。该模型适用于移动设备,并支持特征提取和图像嵌入。凭借出色的Top-1准确率和参数效率,它在同类模型中表现突出,提供快速准确的图像识别能力。
tf_efficientnet_b1.ns_jft_in1k - EfficientNet图像分类模型,无监督学习的图像标杆
EfficientNetGithubHuggingfaceJFT-300mPyTorch半监督学习图像分类开源项目模型
本项目是一个EfficientNet图像分类模型,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上使用Tensorflow训练,并移植到PyTorch中。它可以执行图像分类、特征提取和嵌入生成。拥有仅7.8M参数和高计算效率,适合研究深度学习模型的缩放和性能优化。
tf_mobilenetv3_large_minimal_100.in1k - MobileNetV3轻量级图像分类模型
GithubHuggingfaceImageNetMobileNet-v3pytorchtimm图像分类开源项目模型
tf_mobilenetv3_large_minimal_100.in1k是基于MobileNet-v3架构的图像分类模型,在ImageNet-1k数据集上训练。该模型参数量为3.9M,计算复杂度为0.2 GMACs,适用于资源受限的移动设备。模型支持图像分类、特征图提取和图像嵌入等功能。最初由TensorFlow团队开发,后由Ross Wightman移植到PyTorch平台,为开发者提供了多平台使用选择。
coreml-examples - CoreML演示应用集合展示苹果神经引擎优化技术
CoreMLGithubiOS开发开源项目机器学习模型优化苹果神经引擎
该仓库收录了多个为苹果神经引擎优化的CoreML演示应用,展示了先进机器学习模型在iOS设备上的应用。涵盖FastViT图像分类、Depth Anything V2单目深度估计和DETR语义分割等模型。这些实例不仅展示CoreML功能,还为开发者提供在iOS设备上部署复杂机器学习模型的参考。项目采用coremltools进行优化和测试,是iOS机器学习开发的重要学习资源。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
tf_efficientnetv2_b0.in1k - 轻量高效的图像分类解决方案
EfficientNet-v2GithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNetV2-B0是EfficientNet-v2系列中的轻量级模型,由谷歌研究团队开发并在ImageNet-1k数据集上训练。模型参数仅7.1M,GMACs为0.5,在保持较高准确率的同时大幅降低计算复杂度。除图像分类外,还可用于特征提取和生成图像嵌入。该模型适用于资源受限的环境,如移动设备和边缘计算场景,为开发者提供了高效的图像处理解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号