Project Icon

RevCol

多任务计算机视觉的新型架构

RevCol是一种新型神经网络架构,采用多个子网络(列)通过多层可逆连接组成。作为基础模型骨干,RevCol适用于图像分类、目标检测和语义分割等计算机视觉任务。该架构在ImageNet等基准测试中表现优异,项目提供了训练和评估代码,以及多个数据集上的预训练模型权重,方便研究人员进行进一步探索。

practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
DCNv4 - 为视觉应用设计的高效算子,通过优化空间聚合和内存访问
DCNv4Github可变形卷积开源项目深度学习神经网络计算机视觉
DCNv4是一种为视觉应用设计的高效算子。通过优化空间聚合和内存访问,它解决了DCNv3的局限性。DCNv4在图像分类、分割和生成等任务中表现优异,收敛和处理速度显著提升,前向速度提高3倍以上。其卓越的性能和效率使DCNv4成为未来视觉模型的潜力基础构建块。
InstructCV - 自然语言指令引导的多任务计算机视觉模型
GithubInstructCV开源项目文本到图像生成深度学习生成扩散模型计算机视觉
InstructCV 项目通过指令调优的文本到图像扩散模型,简化了计算机视觉任务的执行方式。该项目将多个计算机视觉任务转化为文本描述的图像生成问题,并使用涵盖分割、物体检测、深度估计和分类等任务的数据集进行训练。利用大型语言模型生成任务提示,该模型从生成模型转变为指令引导的多任务视觉学习者。项目实现了多种环境配置,包括在Huggingface Spaces的Gradio演示和Google Colab的运行示例,并支持PyTorch 1.5+。
LeYOLO - 可扩展高效的目标检测CNN架构
COCO数据集GithubLeYOLO开源项目目标检测神经网络计算效率
LeYOLO是一种新型目标检测模型系列,通过创新的CNN架构设计实现了计算效率与准确性的优化平衡。该模型引入高效主干网络缩放、快速金字塔架构网络和解耦网络中的网络检测头,大幅降低计算负载。在COCO验证集上,LeYOLO-Small仅使用4.5 GFLOP就达到38.2%的mAP,比YOLOv9-Tiny减少42%计算量。LeYOLO系列具有强大可扩展性,适用于从超低计算需求(<1 GFLOP)到高效高性能(>4 GFLOPs)的多种场景。
MogaNet - 多阶门控聚合网络在计算机视觉领域的创新应用
GithubMogaNet人体姿态估计图像分类开源项目目标检测视频预测语义分割
MogaNet是一种创新的卷积神经网络架构,采用多阶门控聚合机制实现高效的上下文信息挖掘。这一设计在保持较低计算复杂度的同时,显著提升了模型性能。MogaNet在图像分类、目标检测、语义分割等多项计算机视觉任务中展现出优异的可扩展性和效率,达到了与当前最先进模型相当的水平。该项目开源了PyTorch实现代码和预训练模型,便于研究者进行进一步探索和应用。
fast-reid - 重识别方法和工具箱
FastReIDGithubPyTorch人脸识别开源项目模型转化重识别
FastReID是一个研究平台,实现了先进的实例重识别算法,重新编写前一版本(reid strong baseline)而来。该平台支持图像检索和人脸识别等多项任务,具备自动混合精度训练、多GPU分布式训练、模型蒸馏等功能,支持多种骨干网络结构和多个数据集的同时测试。新更新包括支持DG-ReID和Vision Transformer骨干网络。更多信息请参考官方文档。
VisualRWKV - 结合RWKV的创新视觉语言模型
GithubRWKVVisualRWKV开源项目微调视觉语言模型预训练
VisualRWKV是一个创新的视觉语言模型,基于RWKV架构设计,可处理多样化的视觉任务。该模型采用两阶段训练策略:首先进行预训练,利用预训练数据集训练视觉编码器到RWKV的投影层;随后进行微调,通过视觉指令数据优化模型性能。项目提供完整的训练指南,涵盖数据准备、模型获取和训练流程,支持多GPU并行和不同规模RWKV模型的训练。
yolov10 - 实现实时端到端目标检测新突破
GithubYOLOv10人工智能实时检测开源项目目标检测端到端
YOLOv10是新一代实时端到端目标检测模型,通过创新的无NMS训练策略和全面的效率-准确度优化设计,在推理速度和计算效率方面实现显著提升。COCO数据集实验结果表明,YOLOv10在不同模型规模下均达到了业界领先的性能和效率水平,为实时目标检测领域带来新的发展方向。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
YOLOv8-multi-task - 轻量级神经网络实现实时多任务目标检测与分割
GithubYOLOv8多任务学习开源项目目标检测自动驾驶语义分割
YOLOv8-multi-task项目提出了一种轻量级神经网络模型,可同时执行目标检测、可行驶区域分割和车道线检测等多任务。该模型使用自适应拼接模块和通用分割头设计,在提高性能的同时保持高效率。实验表明,该模型在推理速度和可视化效果方面优于现有方法,适用于需要实时处理的多任务场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号