Project Icon

T-MAC

优化低比特量化LLM推理的CPU加速框架

T-MAC是一个创新的内核库,采用查找表技术实现混合精度矩阵乘法,无需反量化即可加速CPU上的低比特LLM推理。该框架支持多种低比特模型,包括GPTQ/gguf的W4A16、BitDistiller/EfficientQAT的W2A16和BitNet的W1(.58)A8。T-MAC在多种设备上展现出显著性能提升,例如在Surface Laptop 7上,单核处理速度可达20 tokens/s,四核可达48 tokens/s,比llama.cpp快4~5倍。

mace - 移动设备优化的深度学习推理框架
GithubMACEONNXTensorFlow开源项目深度学习推理框架移动端异构计算
MACE是一款专为Android、iOS、Linux和Windows设备设计的深度学习推理框架,优化了NEON、OpenCL、Hexagon等技术以提升性能。它支持多种模型格式,如TensorFlow、Caffe和ONNX,并提供高级API进行电源管理和UI响应优化。MACE设计注重内存使用、模型保护和平台覆盖,提供丰富的模型格式支持。
SqueezeLLM - 硬件资源优化下的大语言模型量化服务
GithubSqueezeLLM内存优化大语言模型开源项目模型压缩量化
SqueezeLLM通过密集与稀疏量化方法降低大语言模型的内存占用并提升性能,将权重矩阵拆分为易量化的密集组件和保留关键部分的稀疏组件,实现更小内存占用、相同延迟和更高精度。支持包括LLaMA、Vicuna和XGen在内的多个热门模型,提供3位和4位量化选项,适用于不同稀疏度水平。最新更新涵盖Mistral模型支持和自定义模型量化代码发布。
llama-160m-accelerator - 基于多阶段MLP的LLaMA-160M模型推理加速器
DockerGithubHuggingfacevLLM开源项目文本生成模型模型加速深度学习
这是一个为JackFram/llama-160m模型设计的加速器项目,借鉴了Medusa推测解码架构的思想。该加速器通过改造MLP为多阶段结构,实现了基于状态向量和先前采样令牌的单token预测,有效提升了模型推理速度。项目支持与vLLM和Hugging Face TGI等工具集成,为大型语言模型的高效部署提供了实用解决方案。加速器的训练过程轻量化,能够在短时间内完成,适用于各种规模的生成式模型。
MiniCPM-V-2_6-GGUF - 使用imatrix量化优化模型性能
GithubHuggingfaceMiniCPM-V-2_6transformers多语言开源项目模型视觉处理量化
项目应用llama.cpp的imatrix量化方法,优化模型的文本性能。提供多种量化文件,适配不同硬件配置,尤其适合低RAM环境。这一技术允许根据系统RAM和GPU VRAM选择合适的模型,实现性能与速度的平衡。支持多模态图像-文本转换和多语言处理,可在LM Studio中运行,为开源社区提供多样化的工具和使用选择。
Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
mlx_parallm - 为Apple Silicon设备实现高效并行推理
Apple SiliconGithubMLX ParaLLM并行推理开源项目批处理KV缓存语言模型
MLX ParaLLM是一个为Apple Silicon设备开发的开源项目,利用MLX框架实现批处理KV缓存技术,从而提高并行推理效率。项目支持Meta-Llama、Phi-3和Gemma等多种模型,兼容量化和float16格式。通过batch_generate方法,MLX ParaLLM实现自动填充、提示模板格式化和多种采样策略,适用于大规模并行文本生成任务。
fastllm - 纯C++实现的跨平台大语言模型推理库
GPU加速Githubc++实现fastllm多平台大模型推理开源项目
fastllm是一个纯C++实现的大语言模型推理库,无第三方依赖,支持多平台部署。这个开源项目具有快速的推理速度,支持多种模型格式,可实现多卡部署和流式输出。fastllm兼容ChatGLM、Qwen、LLAMA等多种模型,提供Python接口和自定义模型结构功能。该项目适用于需要高效、灵活部署大语言模型的场景。
mlx-llm - 在Apple Silicon上实时运行的高级语言模型应用与工具
Apple SiliconGithubHuggingFaceLarge Language ModelsQuantizationmlx-llm开源项目
mlx-llm支持用户在Apple Silicon设备上实时运行高级语言模型(LLMs)的应用和工具。该项目支持多种预训练模型,并提供简便的安装方法。用户可以加载新版预训练权重、进行模型量化及嵌入提取。此外,mlx-llm还覆盖了多种应用场景,包括命令行聊天、LoRA或QLoRA微调及检索增强生成(RAG)等。
effort - LLM模型计算量实时优化的开源实现
GithubLLM模型推理bucketMul算法开源项目权重加载矩阵乘法计算效率优化
Effort是bucketMul算法的开源实现,支持实时调整LLM模型推理过程中的计算量。在Apple Silicon芯片上,50%effort可匹配常规矩阵乘法速度,25%effort则提供双倍速度,同时保持大部分输出质量。项目支持跳过加载次要权重,实现性能与质量的灵活平衡。Effort Engine提供预编译二进制文件,源代码基于Swift和Metal开发。
EfficientQAT - 高效量化训练技术助力大型语言模型压缩
EfficientQATGithubPyTorch大语言模型开源项目模型压缩量化训练
EfficientQAT是一种针对大型语言模型的量化训练技术。该技术采用两阶段训练方法,包括分块训练所有参数和端到端训练量化参数,在压缩模型大小的同时保持性能。EfficientQAT支持GPTQ和BitBLAS等多种量化格式,已成功应用于Llama和Mistral等模型系列,有效降低模型存储需求,为大型语言模型的部署提供了实用方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号