Project Icon

T-MAC

优化低比特量化LLM推理的CPU加速框架

T-MAC是一个创新的内核库,采用查找表技术实现混合精度矩阵乘法,无需反量化即可加速CPU上的低比特LLM推理。该框架支持多种低比特模型,包括GPTQ/gguf的W4A16、BitDistiller/EfficientQAT的W2A16和BitNet的W1(.58)A8。T-MAC在多种设备上展现出显著性能提升,例如在Surface Laptop 7上,单核处理速度可达20 tokens/s,四核可达48 tokens/s,比llama.cpp快4~5倍。

Meta-Llama-3.1-8B-Instruct-FP8-KV - FP8量化策略提升模型计算效率
FP8GithubHuggingfaceMeta-Llama-3.1-8B-InstructQuark开源项目模型部署量化策略
项目利用Quark工具对模型的线性层进行FP8量化,实现更高效的部署和轻微的推理性能提升。使用Pile数据集进行校准,提高模型性能。支持单GPU和多GPU环境,便于在vLLM兼容后端进行高效部署,Perplexity指标略有提升。
ggml - C语言开发的机器学习张量库 支持多种AI模型推理
GPU加速Githubggml开源项目推理机器学习量化
ggml是一个C语言编写的机器学习张量库,支持16位浮点和整数量化。该库提供自动微分、优化器和多架构优化,无第三方依赖。ggml可用于GPT、LLaMA、Whisper等多种AI模型的推理。它在CPU上表现高效,同时支持GPU加速,适用于多种设备和平台。
model_optimization - 开源神经网络模型压缩与优化工具集
GithubMCTModel Compression Toolkit开源项目模型压缩神经网络优化量化
Model Compression Toolkit (MCT)是一个专注于神经网络模型优化的开源项目,旨在满足高效硬件约束下的部署需求。MCT提供多种量化方法,包括训练后量化和基于梯度的训练后量化,同时支持数据生成和结构化剪枝等功能。此工具集还具备针对特定目标平台的优化能力,为研究人员和开发者提供了全面的模型压缩解决方案。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
BitNetMCU - 低比特量化神经网络在微控制器上的高精度实现
BitNetMCUGithubMNIST数据集开源项目微控制器模型训练量化神经网络
BitNetMCU项目致力于在低端微控制器上实现高精度的低比特量化神经网络。通过优化训练和推理过程,该项目在仅2KB RAM和16KB Flash的CH32V003等微控制器上,实现了16x16 MNIST数据集超过99%的测试准确率,无需使用乘法指令。项目提供基于PyTorch的训练流程和ANSI-C实现的推理引擎,便于在不同微控制器上应用。
Llama-2-Open-Source-LLM-CPU-Inference - 在CPU上运行量化开源LLM的实用指南
C TransformersCPU推理GGMLGithubLangChainLlama-2开源项目
详细介绍如何在本地CPU上使用Llama 2、C Transformers、GGML和LangChain运行量化开源LLM进行文档问答的指南。内容涵盖工具配置、模型下载和依赖管理,帮助团队实现自我管理或私有部署,满足数据隐私和合规要求,并节省GPU实例的高额费用。
tvm - 适用于 CPU、GPU 和专用加速器的开放式深度学习编译器堆栈
Apache TVMApache-2.0Github开源项目深度学习硬件后端编译器
Apache TVM为深度学习提供高效编译支持,优化执行效率,适合用于学术与工业研究领域,填补了框架与后端之间的技术差距。
mcunet - 面向微控制器的深度学习框架
GithubMCUNetTinyEngine开源项目微控制器深度学习物联网设备
MCUNet是面向微控制器的系统-算法协同设计框架,包含TinyNAS和TinyEngine两大核心组件。该框架在严格内存限制下提升深度学习性能,相比现有方案推理速度提高1.5-3倍,内存占用降低2.7-4.8倍。MCUNet为IoT应用提供高效深度学习基础设施,推动边缘AI发展。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
llama2.rs - Rust开发的高效Llama2 CPU推理库
CPU推理GithubLlama2RustSIMD开源项目量化
llama2.rs是一个用Rust开发的Llama2 CPU推理库,专注于提供高性能的推理能力。项目支持4位GPT-Q量化、批量预填充提示标记、SIMD加速和内存映射等技术,实现了70B模型的即时加载。通过Python API,开发者可在普通台式机上运行70B Llama2模型(1 token/s)和7B模型(9 tokens/s)。该项目为大规模语言模型的CPU推理提供了高效且灵活的开源解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号