Project Icon

nnsight

解释和操作深度学习模型内部的Python包

nnsight是一个专门用于深度学习模型内部解释和操作的Python包。它可以访问模型隐藏状态、进行噪声注入和跨提示干预。该工具支持保存中间值、修改参数和多token生成等功能,方便研究人员和开发者深入分析和调试神经网络模型。

tract - 神经网络推理工具,支持多种格式与优化
GithubNNEFONNXTensorFlowtract开源项目神经网络推理
`tract`是一款神经网络推理工具,支持读取和优化ONNX与NNEF格式。它提供多种神经网络模型的支持,并附有详尽的技术文档和应用实例,适用于移动设备和微控制器等多种应用场景。
mindnlp - 开源自然语言处理与大语言模型框架
GithubMindNLPMindSpore大语言模型开源项目自然语言处理预训练模型
MindNLP是一个基于MindSpore的开源自然语言处理库,支持语言模型、机器翻译、问答系统、情感分析、序列标注和摘要生成等多种任务。该项目集成了BERT、Roberta、GPT2和T5等多种预训练模型,通过类似Huggingface的API简化了使用流程。用户可通过pypi或源代码安装该库,并支持包括Llama、GLM和RWKV在内的大型语言模型的预训练、微调和推理,非常适合研究者和开发人员构建和训练模型。
norse - 生物启发的脉冲神经网络深度学习库
GithubNorsePyTorch开源项目深度学习神经形态计算脉冲神经网络
Norse是一个基于PyTorch的脉冲神经网络深度学习库,提供生物启发的神经元组件。它利用神经元的稀疏性和事件驱动特性,为研究人员和开发者提供现代化基础设施。Norse支持多种神经元模型、突触动力学和算法,并提供数据集集成和任务示例,适用于不同规模的实验环境。
pytorch-tutorial - 为深度学习研究人员提供了学习 PyTorch 的教程代码
GithubPyTorch代码开源项目教程深度学习神经网络
突破传统学习障碍,探索PyTorch深度学习教程。通过精炼的代码,快速构建从基础到高级的模型如线性回归及神经网络等,同时详述安装指导与环境配置。
nnAudio - 基于PyTorch的快速GPU音频处理工具箱
GPUGithubPyTorchnnAudio开源项目音频处理频谱图
nnAudio是一款基于PyTorch的音频处理工具箱,利用卷积神经网络实现实时频谱图生成和傅里叶核心训练。它具备跨平台兼容性、可训练性和可微分性,支持STFT、梅尔频谱、MFCC、CQT等多种音频处理功能。相比传统工具,nnAudio在GPU上提供更高效的音频分析和处理方案。
modelscan - 开源AI模型安全扫描工具助力高效检测风险
GithubModelScan安全扫描序列化攻击开源项目机器学习模型
ModelScan是Protect AI开发的开源AI模型安全扫描工具,支持H5、Pickle和SavedModel等多种格式。它可快速识别PyTorch、TensorFlow、Keras等框架中的模型安全风险,有效防范模型序列化攻击。ModelScan易于集成到机器学习流程中,为AI模型全生命周期提供安全保障,保护数据和系统安全。
tt-metal - Python与C++神经网络运算库
GithubGrayskull模组TT-MetaliumTT-NNWormhole模组开源项目神经网络
TT-NN 提供灵活的神经网络运算功能,支持包括ResNet-50和BERT-Large在内的多种模型,能够实现高效的端到端和设备间的数据吞吐量。其兼容N150和N300卡的Wormhole模型,及适用于TT-QuietBox和TT-LoudBox的高性能模型,能满足不同硬件需求。结合TT-Metalium低级编程模型,提供丰富的开发指导和API参考,有助于在Tenstorrent硬件上高效地进行神经网络训练和推理。
PyTorch_Tutorial - PyTorch深度学习实践教程
GithubPyTorch代码实践开源项目教程模型训练深度学习
PyTorch_Tutorial是一个综合性深度学习教程项目,专注于PyTorch框架的应用。教程涵盖基础到高级的模型训练技巧,提供计算机视觉、自然语言处理和大型语言模型等领域的实践案例。内容还包括ONNX和TensorRT等推理部署框架的使用指南,展示了从模型开发到部署的完整流程。项目定期更新,配有环境配置说明,适合深度学习研究者和实践者参考学习。
lightly - 简单易用的自监督学习工具,支持自定义骨干模型和分布式训练
GithubLightlyPyTorch多模型支持开源项目自监督学习计算机视觉
这个开源项目提供简单易用的自监督学习工具,支持自定义骨干模型和分布式训练。通过模块化设计,用户可以自由调整损失函数和模型头。项目还提供商业版本,包含用于嵌入、分类、检测和分割任务的预训练模型。此外,平台集成了主动学习和数据策划功能,适用于大规模数据处理和强大算法的应用。
XNNPACK - 多平台优化的神经网络推理引擎 支持移动和嵌入式系统
GithubXNNPACK开源项目深度学习框架神经网络推理移动平台优化算子支持
XNNPACK是一个用于加速高级机器学习框架的神经网络推理引擎。它支持ARM、x86、WebAssembly和RISC-V等多种平台,提供低级性能原语,优化TensorFlow Lite、PyTorch等框架的运行效率。XNNPACK实现了丰富的神经网络操作符,在移动设备和嵌入式系统上表现出色,能高效运行各代MobileNet模型。在Pixel 3a上,XNNPACK能在44毫秒内完成FP32 MobileNet v3 Large的单线程推理,展现了其卓越的性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号