Project Icon

amd-power-dialer-v1

少样本高效文本分类模型概览

了解利用SetFit和Sentence Transformer进行少样本高效文本分类的方式,该模型微调Sentence Transformer并用其特征进行分类头训练。用户可通过简单安装与代码示例快捷进行推理,显著优化文本分类任务。

e5-base-v2 - 多任务训练的自然语言处理模型
GithubHuggingfaceMTEBSentence Transformers开源项目机器学习模型模型评估自然语言处理
e5-base-v2是一个经过多任务训练的语言模型,主要用于句子相似度计算和文本分类。该模型在MTEB基准测试中展现出优秀性能,涵盖亚马逊评论分类、问答检索和文本聚类等多个领域。e5-base-v2可应用于信息检索、文本匹配和语义搜索等多种自然语言处理场景。
gte-large-zh - 中文语义相似度与检索的卓越表现模型
GithubHuggingfaceMTEBgte-large-zhsentence-transformers开源项目模型自然语言处理语义相似度
gte-large-zh模型在MTEB中文基准测试中表现突出,涵盖句子相似度、文本分类、聚类、重排序和检索等多个任务。该模型在CMNLI和JDReview等数据集上的准确率超过80%,为中文自然语言处理应用提供了稳定的语义理解基础。
hardware-aware-transformers - 瞄准多硬件平台优化的自然语言处理Transformer模型
GithubHATNLPPyTorchTransformer开源项目硬件感知
HAT项目提供基于PyTorch的硬件感知Transformer,模型大小减小至原来的3.7倍,且性能无损。通过SuperTransformer搜索优化的SubTransformer,大幅降低搜索成本,并在不同硬件平台例如Raspberry Pi和Intel Xeon上实现显著加速。支持多种机器翻译任务,并提供预处理数据和预训练模型的直接下载。
HDLTex - 层级深度学习提升大规模文本分类效能
GithubHDLTex层次分类开源项目文本分类文档处理深度学习
HDLTex是一种创新的层级深度学习方法,旨在解决大规模文档集合的文本分类难题。该方法采用堆叠式深度学习架构,为文档层次结构的各个层级提供专门化理解。HDLTex通过层级分类方式提升了分类性能,尤其适合类别数量庞大的场景。项目开源了完整实现代码和详尽文档,支持多个标准数据集,并提供pip和git两种便捷安装方式。
dl-for-emo-tts - 通过深度学习实现情感语音合成
GithubTacotron优化器开源项目情感语音合成数据集深度学习
项目通过深度学习实现情感语音合成,包括Tacotron和DCTTS模型的应用。详细介绍了使用的数据集、相关文献和多种模型微调策略,如调整学习率和冻结网络层。尽管面临情感数据集有限的问题,但实验验证了改进方案对低资源情感TTS传递学习的有效性。
SmallLanguageModel-project - 自主构建完整的语言模型,从数据采集到训练一步到位
GithubPythonSmallLanguageModel依赖安装开源项目数据处理模型训练
该项目提供全面的构建语言模型指南,包括数据收集、预处理及模型训练。项目涵盖从数据采集到训练多种模型(如BERT、GPT、Seq-2-Seq)的全部必要工具和步骤。适用于Python 3.8及以上版本,通过详细的教程和文档帮助开发者高效实现模型训练与应用。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
FasterTransformer - 基于NVIDIA平台的高性能Transformer编解码器实现与调优
BERTFasterTransformerGPTGithubNVIDIATensorRT-LLM开源项目
FasterTransformer不仅支持多框架集成,还针对NVIDIA新一代GPU优化了编解码性能,极大提升了操作效率和处理速度。包含模型支持、性能对比及API演示的详细文档,有助于用户深入了解并有效使用FasterTransformer。
F5-TTS - 提高训练和推理速度的先进文本到语音转换系统
E2 TTSF5-TTSGithub开源项目推理数据集训练
项目F5-TTS利用Diffusion Transformer和ConvNeXt V2技术,显著提升了训练和推理速度。支持生成最长30秒的音频,并通过Sway Sampling技术优化推理性能。用户可以自定义数据集,并使用多GPU和fp16配置加速训练。提供单次推理、语音编辑和批量推理功能,并支持通过Gradio App进行操作。多种测试数据集和评估工具确保模型表现稳定高效。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号