Project Icon

BERT-Tiny_L-2_H-128_A-2

Google开发的压缩版BERT模型 2层128隐藏单元2注意力头

BERT-Tiny_L-2_H-128_A-2是Google研发的轻量级BERT模型。该模型采用2层结构、128个隐藏单元和2个注意力头,大幅降低了计算资源需求。它在保持BERT核心功能的同时,适用于资源受限环境,为快速部署和实时处理提供了高效解决方案。这一压缩版BERT模型在自然语言处理任务中平衡了性能和资源消耗。

bert_uncased_L-12_H-512_A-8 - 小型BERT模型适用于有限计算资源的高效预训练
BERTGithubHuggingface开源项目模型知识蒸馏紧凑模型计算资源预训练
该项目介绍了24种面向资源受限环境的小型BERT模型,支持低计算资源研究。模型遵循BERT标准架构,并在知识蒸馏中表现优异,可通过官方GitHub和HuggingFace平台获取,助力资源有限下的研究创新。
compact-biobert - 压缩优化的生物医学BERT模型
CompactBioBERTGithubHuggingface开源项目模型模型蒸馏深度学习生物医学自然语言处理
CompactBioBERT是BioBERT的压缩版本,通过结合DistilBioBERT和TinyBioBERT的蒸馏技术,在PubMed数据集上训练而成。该模型采用6层transformer结构,隐藏层和嵌入层维度为768,总参数约6500万。CompactBioBERT在保持生物医学自然语言处理性能的同时,有效缩小了模型规模,提升了计算效率。
academic-budget-bert - 学术预算下的BERT模型高效训练方案
BERTGithub开源项目微调深度学习自然语言处理预训练
该项目提供一套脚本,用于在有限计算资源和时间预算下预训练和微调BERT类模型。基于DeepSpeed和Transformers库,项目实现了时间感知学习率调度和混合精度训练等优化技术。此外,还包含数据预处理、检查点保存和验证调度等功能,并提供训练命令生成工具。这些方法使研究人员能在学术预算限制内高效训练大型语言模型。
fast-bert - 快速训练和部署BERT与XLNet文本分类模型的深度学习库
Fast-BertGithub开源项目文本分类深度学习自然语言处理预训练模型
fast-bert是一个深度学习库,用于训练和部署基于BERT和XLNet的文本分类模型。它支持多类和多标签分类,提供数据处理、模型训练、参数调优和部署功能。该库集成了LAMB优化器和学习率查找器,旨在简化最新自然语言处理技术的应用过程。fast-bert适用于各类文本分类任务,能够帮助开发者快速构建高性能模型。
UltraFastBERT - 指数级加速的BERT语言模型训练与推理方案
BERTGithubUltraFastBERT开源项目机器学习神经网络语言模型
UltraFastBERT是一个开源项目,旨在通过创新的快速前馈(FFF)层设计实现BERT语言模型的指数级加速。项目提供了完整的训练代码,以及在CPU、PyTorch和CUDA平台上的高效实现。包含训练文件夹、各平台基准测试代码,以及UltraFastBERT-1x11-long模型的配置和权重,可通过HuggingFace轻松加载使用。研究人员可以方便地复现结果,并进一步探索该突破性技术在自然语言处理领域的广泛应用潜力。
TinyLlama - 3万亿token训练的小型1.1B参数语言模型
AI预训练GithubTinyLlama开源项目模型评估语言模型
TinyLlama是一个使用3万亿token预训练的1.1B参数语言模型。它与Llama 2架构兼容,可集成到现有Llama项目中。TinyLlama体积小巧,适用于计算和内存受限的场景。该项目开源了预训练和微调代码,具有高效的训练和推理性能。TinyLlama可应用于推测解码、边缘计算和实时对话等领域。
BERT-GPU - 单机多GPU加速BERT预训练的开源实现
BERTGithub多GPU预训练开源项目数据并行深度学习自然语言处理
BERT-GPU项目为BERT模型在单机多GPU环境下的预训练提供了开源实现。该项目无需Horovod即可实现数据并行,通过增加GPU数量扩大批处理规模,从而加速训练过程。项目包含详细的训练流程和参数配置说明,并提供了下游任务的实验结果。这种方法在维持模型性能的同时,有效提升了预训练效率。
TinyNeuralNetwork - 高效易用的深度学习模型压缩框架
GithubTinyNeuralNetwork开源项目模型压缩深度学习神经网络量化训练
TinyNeuralNetwork是一个开源的深度学习模型压缩框架,提供神经架构搜索、剪枝、量化和模型转换等功能。该框架支持计算图捕获、依赖解析、多种剪枝算法、量化感知训练和模型转换,为深度学习模型优化提供全面解决方案。TinyNeuralNetwork已应用于天猫精灵、海尔电视等超过1000万IoT设备,实现AI能力部署。
BitNet-Transformers - 缩放1-bit大语言模型,提高GPU内存利用率
BitNet-TransformersGithubHuggingfaceLLama(2)Wikitext-103pytorch开源项目
BitNet-Transformers项目使用Llama (2)架构,并通过1-bit权重缩放技术,实现对大型语言模型的高效训练和推理。该项目基于Huggingface Transformers,显著降低了GPU内存占用,从原始LLAMA的250MB减少到BitNet模型的最低要求。用户可通过wandb实时追踪训练进度,并在Wikitext-103上进行训练。项目提供了详细的开发环境配置和训练步骤指南,为研究者和开发者提供有力支持。
character-bert - 字符级CNN构建的开放词汇表神经网络模型
CharacterBERTGithub开放词表开源项目神经网络自然语言处理词嵌入
CharacterBERT是BERT的一个变体,采用字符级CNN模块动态构建词表示,无需依赖预定义词片词汇表。这种方法可生成任意输入标记的表示,适用于医学等专业领域。与标准BERT相比,CharacterBERT生成词级上下文表示,对拼写错误更为鲁棒,且可轻松适应不同领域而无需重新训练词片词汇表。该模型在多个医学领域任务中表现优于BERT,提供更便捷实用的词级开放词汇表表示。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号