Project Icon

deep-license-plate-recognition

基于深度学习的多功能车牌识别系统

deep-license-plate-recognition是一个基于深度神经网络的自动车牌识别系统。该项目可在复杂环境下准确识别车牌,支持90多个国家,能识别车辆类型、品牌、型号和颜色。系统提供REST API接口,兼容多种编程语言和操作系统平台。适用于停车场管理、道路监控等场景,并提供免费试用。

ultimateALPR-SDK - 车牌识别及多功能车辆特性检测解决方案
AndroidDeep LearningGithubLicense Plate RecognitionNVIDIAUltimateALPR开源项目
结合最新深度学习技术,ultimateALPR-SDK 提供卓越的识别速度和精度。适用于多个操作系统和编程语言,功能包括车牌识别、夜视图像增强、车辆颜色识别等。通过内置计算减少系统成本,无需专用硬件或网络连接,适用于智能交通。支持多平台并附有详细文档和示例程序,帮助开发者迅速上手。
End-to-end-for-chinese-plate-recognition - 中文车牌识别与矫正的解决方案
CNNEnd-to-end-for-chinese-plate-recognitionGithubTensorFlowU-Net开源项目车牌识别
项目基于u-net、cv2和卷积神经网络(cnn),使用tensorflow和keras实现。功能包括中文车牌的定位、矫正和识别。通过u-net进行图像分割,cv2进行边缘检测和车牌区域矫正,再用cnn实现多标签端到端识别。测试表明,系统在拍摄角度倾斜、强曝光和昏暗环境下表现出色,甚至对某些百度AI未能识别的车牌也能识别。请确保输入图片尺寸小于240x80,以获得最佳识别效果。详情请参阅CSDN博客。
persian-license-plate-recognition - 波斯车牌快速精准识别
GithubPersian License Plate RecognitionYOLOv5图像识别实时处理开源项目深度学习
利用先进的深度学习模型和友好界面,实现高精度的波斯车牌识别。适用于交通监控和自动车辆识别,支持实时视频流处理与管理。
OpenALPR - 自动车牌识别和车辆特征分析平台
AI工具OpenALPRRekor人工智能车牌识别车辆识别
OpenALPR是一款自动车牌识别和车辆分析平台,可实时识别车牌号码、车辆品牌、型号和颜色等信息。平台提供Scout和CarCheck两款主要产品,适用于执法、停车管理、物业安防和软件开发等领域。其特点包括快速部署、高精度识别和支持多国车牌,为用户提供有价值的车辆数据分析,助力提升业务效率和社区安全。
HyperLPR - 高性能跨平台车牌识别框架
GithubHyperLPR3开源项目快速部署跨平台车牌识别高性能
HyperLPR3是一个高性能车牌识别框架,支持Python、Windows、Mac、Linux和树莓派等平台。其识别速度快,准确率高,适用于多种场景。项目提供详细的安装、测试指南和多种API接口,方便开发者快速集成和使用。
yolov5m-license-plate - 车牌检测的YOLOv5模型支持Pytorch适用于多种视觉任务
GithubHuggingfacePyTorchYOLOv5开源项目模型深度学习目标检测车牌识别
YOLOv5m-license-plate项目提供基于YOLOv5技术的车牌检测模型,利用Pytorch进行对象检测,适用于多种计算机视觉任务。开发者可运用简单的Python代码实现精准车牌识别,并支持通过自定义数据集进行微调以提升效果。在keremberke数据集上的精度高达0.988,适合快速、可靠的车牌检测应用。访问项目主页获取更多信息和下载。
license_plate_recognizer - 精准识别车牌文字的OCR模型,适合自动化监控应用
GithubHuggingfaceLicense Plate RecognitionOCRTransformer模型字符错误率开源项目模型自动监控
此模型基于微软的trocr-base-handwritten,专门开发用于从车牌图像中提取文本,特别适用于OCR车牌识别任务,字符错误率为0.0036,适合各类车辆自动化监控系统。利用TrOCR模型并在PawanKrGunjan/license_plates数据集上微调,能高效将图像转换为文本。在低光或者低分辨率下,性能可能下降,且可能会受到不同地区车牌设计差异的影响。
yolos-small-finetuned-license-plate-detection - 车牌识别微调模型提升物体检测能力
GithubHuggingfaceYOLOS开源项目模型模型微调目标检测视觉Transformer车牌识别
YOLOS小型模型经过微调适用于车牌检测,使用5200张图片进行训练,并在380张图片上验证,实现49.0的平均精度。模型支持PyTorch平台,并通过Python代码执行对象检测与边界框预测。其此前版本曾在ImageNet-1k和COCO 2017数据集上进行训练,具备卓越的识别性能。
yolov5n-license-plate - 基于YOLOv5的轻量级车牌检测模型
GithubHuggingfacePyTorchYOLOv5开源项目机器视觉模型目标检测车牌识别
基于YOLOv5架构开发的轻量级车牌检测模型,通过pip快速安装部署。模型支持自定义参数配置,包括置信度阈值和IoU阈值调节,并集成了数据增强功能。提供完整的模型加载、推理和微调接口,可用于实际车牌检测场景,在验证集上展现出较高的检测精度。
Vehicle-Detection - 深度学习与YOLO算法实现的车辆检测系统
GithubYOLO算法开源项目数据集模型训练深度学习车辆检测
Vehicle-Detection项目结合深度学习和YOLO算法实现车辆检测。项目提供完整工作流程,涵盖数据集准备、模型训练和测试。采用YOLOv5预训练模型微调,集成wandb工具监控性能。项目包含自定义车辆数据集,并提供详细的安装、训练和测试指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号