Project Icon

dtreeviz

提供直观的决策树可视化和模型解释功能

dtreeviz是一个专注于决策树可视化和模型解释的Python库。它支持多个主流机器学习框架,如scikit-learn、XGBoost等。该库提供树结构、预测路径、叶节点和特征空间等多种可视化功能,帮助用户直观理解决策树模型原理。dtreeviz适用于机器学习实践者和研究人员,可用于模型解释和教学等场景。

visidata - 终端界面的多功能表格数据处理工具
GithubVisiData开源软件开源项目数据可视化终端工具表格数据处理
VisiData是一款基于终端界面的表格数据处理工具,支持tsv、csv、sqlite、json、xlsx等多种格式。它提供直观的操作界面,便于快速浏览、筛选和分析大量数据。VisiData支持数据排序、过滤、统计等常用操作,适用于日志分析、数据清洗等任务。该工具适用于Linux、OS/X和Windows(WSL)平台,运行环境为Python 3.8+。VisiData通过高效的数据处理能力和灵活的命令系统,为数据分析和开发工作提供便利。
tree-js - 基于Three.js的程序化树木生成器 支持多参数调整和模型导出
3D建模GithubJavaScriptThree.js参数化设计开源项目程序化树木生成
Tree.js是基于Three.js开发的程序化树木生成器。该工具提供多种可调参数,涵盖树干、分支、叶子等细节,支持实时调整树木外观。Tree.js允许创建独特的树木模型,并可导出为.glb格式。项目包含实时演示应用,方便直观调整参数和预览效果。这一工具适用于3D场景设计、游戏开发等领域,为创作者提供灵活的树木生成方案。
awesome-python-data-science - Python数据科学资源集合,详解机器学习与深度学习工具
GithubPython工具库开源项目数据科学机器学习深度学习
该项目收集了全面的Python数据科学资源,包括机器学习、深度学习、自动化机器学习、自然语言处理、计算机视觉、时间序列分析和强化学习等领域的开源库。从通用型机器学习算法到深度学习框架(如PyTorch和TensorFlow),再到特征工程和数据可视化,用户可以找到适用于各种数据分析和建模需求的工具。项目旨在帮助数据科学家和工程师高效选择工具,以提高开发和分析效率。
AlphaTree-graphic-deep-neural-network - 深入探索深度学习与AI应用
AlphaTreeGithub图像分类开源项目模型改进深度学习神经网络
AlphaTree项目致力于通过详细的文章、代码和图示帮助用户掌握深度学习、GAN、NLP和大数据等领域的技术,适合希望在AI工程领域提升技能的学习者。
orange3 - 直观易用的数据挖掘与可视化工具箱 无需编程知识
GithubOrange Data Mining可视化工具箱工作流程开源项目数据分析数据挖掘
Orange作为一款开源的数据挖掘与可视化工具箱,致力于数据科学的民主化。它面向新手和专家,通过基于工作流的方式隐藏复杂机制,使用户无需编程或深入的数学知识即可探索数据。该工具支持可视化工作流创建、多种数据分析方法,并提供丰富的插件扩展功能。Orange适用于各类数据科学任务,从数据预处理、特征选择到模型评估,涵盖简单的数据可视化到复杂的机器学习模型构建。作为跨平台工具,Orange支持Windows、Mac和Linux系统,为用户提供灵活且强大的数据分析体验。
interpret-text - 基于Interpret的开源NLP模型解释工具,支持文本模型分析
GithubInterpret-TextNLP互动可视化仪表板可解释性技术开源项目文本解释
Interpret-Text是一个开源工具包,基于Interpret Python包,扩展了对文本模型的支持,提供SDK和示例Jupyter笔记本。用户可以使用全球和局部解释工具,分析和解释机器学习模型的预测结果。核心功能包括社区驱动的创新技术、统一API和互动式可视化仪表盘,适用于开发者、数据科学家、业务高管和研究人员,通过多种解释器和NLP应用场景,简化模型解释和审计过程。
catboost - 梯度提升和分类特征支持的机器学习工具
Apache SparkCatBoostGithub决策树开源项目机器学习梯度提升
CatBoost是一种基于决策树的梯度提升算法,具有高准确性和速度优势,能够处理数值和分类特征。它提供快速的GPU训练、直观的可视化工具和与Apache Spark的分布式训练支持,适用于多种应用场景。通过官方文档和教程,用户可以快速上手,并通过参数调优和交叉验证进一步优化模型性能。
ivis - 基于神经网络的高维数据降维和可视化算法
Githubivis算法开源项目数据可视化机器学习神经网络降维
ivis是一种基于暹罗神经网络的数据降维算法,专门用于处理高维数据集。该算法支持无监督和有监督学习,能够有效保持数据的局部和全局结构。ivis适用于大规模数据集,支持多种数据格式,包括numpy数组、稀疏矩阵和hdf5文件。它在聚类、异常检测等任务中表现出色,为数据分析提供了强大的可视化工具。ivis算法采用基于三元组的神经网络结构,能够高效处理百万级数据点和上千维特征,在保持数据结构方面常常优于t-SNE等传统方法。支持新数据点的转换,可以轻松集成到sklearn管道中,在高维数据可视化、聚类分析和异常检测等领域具有广泛应用前景。
deepsvg - DeepSVG:矢量图形生成与动画的分层网络
DeepSVGGithubNeurIPS2020向量图形动画开源项目深度学习生成网络
该项目提供了一种用于SVG图像生成和动画的分层生成网络,附带深度学习SVG数据的库。用户可以获取预训练模型、完整的数据集及其预处理工具。图形用户界面演示了DeepSVG在矢量图动画中的应用。详细介绍了如何克隆存储库、安装依赖和进行训练与推理,为研究人员和开发者提供全面的资源、示例代码和文档,适合从事图形生成和动画的研究与项目开发。
dowhy - 支持多种因果推理任务的Python库
DoWhyGithubPython库因果推理图形因果模型开源项目潜在结果
DoWhy是一个Python因果推理库,集成了图形因果模型和潜在结果框架。它提供统一接口支持因果效应估计、根因分析和反事实推理等多种任务。该库注重结果可解释性,并具有反驳和验证功能,增强了因果推理的稳健性。DoWhy适用于客户流失分析、营销效果评估和异常归因等多个领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号