Project Icon

cnn-explainer

互动可视化工具,帮助用户理解卷积神经网络

CNN Explainer 是一个用于学习卷积神经网络的互动可视化工具,提供实时演示和本地运行功能。用户可以克隆代码库并在本地环境中运行,支持自定义模型和图像类别。该工具由乔治亚理工学院与俄勒冈州立大学合作开发。

ecco - 使用交互式可视化工具理解自然语言处理模型
EccoGithubTransformer模型可视化开源项目自然语言处理解释性
Ecco是一个Python库,通过交互式可视化工具解释基于Transformer的自然语言处理模型。它专注于探索预训练模型,功能包括特征归因、神经元激活捕获及可视化、Token处理过程等。支持GPT2、BERT、RoBERTA等多种模型,帮助理解Transformer模型的内部机制和决策过程。
practicalAI-cn - PyTorch与Google Colab下的机器学习与深度学习实践
GithubGoogle ColabPyTorchpracticalAI开源项目机器学习深度学习
通过practicalAI-cn项目,任何水平的学习者都可以从基础到进阶掌握机器学习与深度学习技能。项目使用PyTorch实现核心算法,并提供多种notebooks,涵盖线性回归、卷积神经网络等多种模型。无需复杂的环境设置,可通过Google Colab直接运行,进行产品级的面向对象编程学习,助力从数据中获取有价值的见解。
EEG-Conformer - 结合卷积和自注意力的EEG解码与可视化工具
EEG ConformerEEG解码Github卷积神经网络大脑波形投影开源项目自注意力机制
EEG Conformer是一种结合卷积和自注意力机制的EEG分类与可视化工具。其卷积模块提取时间和空间上的局部特征,自注意力模块捕捉全局关联,最终通过全连接层进行分类预测。此外,EEG Conformer还具备将类激活映射到脑拓扑图的可视化功能。支持Python 3.10和Pytorch 1.12,在多个BCI竞赛数据集上表现出色。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
ManimML - 机器学习概念动画可视化工具
GithubManimML动画可视化开源项目机器学习神经网络
ManimML是基于Manim社区库开发的开源项目,旨在为机器学习概念提供动画和可视化。该工具提供了丰富的基础可视化组件,可以轻松创建复杂机器学习概念的视频演示。ManimML支持可视化前馈神经网络、卷积神经网络、最大池化和激活函数等,并能生成前向传播动画。通过提供高级抽象,ManimML让用户能专注于内容解释而非编程细节,是机器学习教育和交流的实用工具。
awesome-machine-learning-interpretability - 负责任机器学习资源综合指南
Github人工智能开源项目机器学习模型治理解释性责任AI
此项目整理了全面的负责任机器学习资源,包括社区和官方指导、教育资源、技术工具等。涵盖解释性、公平性、隐私保护等主题的框架、数据集、书籍、课程。为负责任AI的研究和开发提供宝贵参考。项目保持更新,鼓励社区贡献,致力于推动机器学习的负责任发展。
t81_558_deep_learning - 深度神经网络的应用
Deep LearningGithubJeff HeatonKerasTensorFlowWashington University开源项目
本课程结合先进训练技术和神经网络架构,使学生能够处理表格数据、图像、文本和音频。内容涵盖经典神经网络、卷积神经网络(CNN)、长短期记忆网络(LSTM)、门控循环单元(GRU)、生成对抗网络(GAN)和强化学习,应用于计算机视觉、时间序列、安全性、自然语言处理(NLP)和数据生成等领域。通过使用Python实现TensorFlow和Keras,课程特别侧重深度学习的实际应用。无需预先了解Python,但需具备基本编程知识。
Neural-Network-Architecture-Diagrams - 使用diagrams.net创建神经网络模型图
AutoencoderGithubNeural NetworkVGG-16YOLO v1diagrams.net开源项目
本项目使用diagrams.net(也叫draw.io)生成神经网络模型图,帮助用户直观理解不同的神经网络结构。涵盖YOLO v1、VGG-16、Autoencoder等实例,并欢迎贡献新的架构图。无论是初学者还是研究人员,皆可受益于提供的可视化示例。点击查看更多详情,了解如何分享架构图。
DeepLearning - 深度学习概念与技术详解
Aaron CourvilleDeep LearningGithubIan GoodfellowYoshua Bengio开源项目深度学习
本项目解析《深度学习》一书,通过数学推导和Python代码实现,涵盖线性代数、概率论、优化算法等基础知识,以及卷积网络、序列建模等深度学习技术。适用于深度学习初学者和从业者,提供详尽的理论和源码实现,帮助掌握深度学习算法。
shap - 通过博弈论解释机器学习模型输出的实用工具
GithubSHAP开源项目机器学习特征影响算法解释模型
SHAP(SHapley Additive exPlanations)采用博弈论中的Shapley值进行机器学习模型输出解释,支持包括树模型、深度学习及自然语言处理模型,提供丰富的可视化工具以清晰显示模型决策过程。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号