Project Icon

SimpleView

高效点云形状分类的新基线方法

SimpleView项目重新审视点云形状分类问题,提出基于多视图的简单高效方法。在ModelNet40和ScanObjectNN等标准3D点云数据集上实现最先进性能,为点云处理和机器学习研究提供新基准。项目开源代码和模型,便于复现和进一步研究。

DL-Simplified - 为深度学习领域的贡献者提供从入门到高级的项目集
Deep LearningGithubMachine Learning开源开源项目数据分析项目贡献
DL-Simplified 资源库为深度学习领域的贡献者提供从入门到高级的项目集。该库包括按模板组织的数据集、图片、模型文件和依赖。用户可浏览问题区、fork仓库、创建PR等方式参与。深度学习通过多层神经网络处理大量数据,实现不同级别的数据抽象。了解最新的开源活动和参与方法,及项目成就与贡献者。
DreamCraft3D - 层次化高保真3D内容生成技术
3D内容生成DreamCraft3DGithub几何雕刻分层结构开源项目纹理增强
DreamCraft3D是一种高保真层次化3D内容生成技术,利用2D参考图像指导几何雕刻和纹理增强,解决一致性问题。通过词汇蒸馏采样、视图依赖扩散模型和引入Bootstrapped Score Distillation,提升了几何一致性和纹理质量。该项目通过交替优化扩散先验和3D场景表示,生成逼真的3D对象,提升了3D内容生成技术水平。
VMamba - 高效的线性时间复杂度视觉骨干网络
GithubVMamba图像处理开源项目深度学习神经网络计算机视觉
VMamba是一种创新的视觉骨干网络,将Mamba状态空间语言模型应用于计算机视觉。其核心是视觉状态空间块堆栈,结合2D选择性扫描模块,实现线性时间复杂度。VMamba在图像分类、目标检测和语义分割等多项视觉任务中表现出色,特别是在输入尺度扩展效率方面优于现有模型。项目提供多种规模的预训练模型,适用于各类视觉感知任务。
DenseCL - 改进密集预测任务的视觉预训练方法
DenseCLGithub密集预测对比学习开源项目自监督学习视觉预训练
DenseCL是一种自监督视觉预训练方法,通过密集对比学习提升模型在密集预测任务中的表现。该方法实现简洁,核心部分仅需10行代码,适配多种数据增强技术。实验表明,DenseCL在目标检测和语义分割任务中性能显著提升,同时保持训练效率。项目开源了预训练模型和使用指南,便于研究者在视觉任务中应用。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
DiT-3D - 基于纯扩散变换器的3D形状生成新方法
3D形状生成DiT-3DGithubShapeNet开源项目扩散变换器点云
DiT-3D是一个基于纯扩散变换器的3D形状生成项目。该方法直接对体素化点云进行去噪处理,支持多种配置,如不同的体素大小、补丁维度和模型复杂度。在椅子类别的生成任务中,DiT-3D在1-NNA-CD、1-NNA-EMD、COV-CD和COV-EMD等指标上表现良好。这一方法为3D形状生成领域提供了新的研究方向。
smol-vision - 前沿视觉模型优化与定制的实用技巧集锦
GithubONNX量化Smol Vision开源项目模型微调知识蒸馏视觉模型优化
smol-vision项目汇集了多种视觉模型优化技术,包括量化、ONNX转换、模型微调和知识蒸馏。项目提供了实用示例,展示如何使用Optimum优化目标检测模型、微调PaliGemma和Florence-2视觉语言模型,以及通过torch.compile加速基础模型。这些方法旨在帮助开发者提高模型性能、缩小规模和加快推理速度,使模型更好地适应各种硬件环境。
dust3r - 简化几何3D视觉重建的开源项目
3D重建DUSt3RGithub开源项目深度学习计算机视觉
dust3r是一个开源的3D视觉重建项目,旨在简化几何3D视觉处理。该项目提供了一个能够从多张图像重建3D场景的模型。dust3r包含交互式演示功能、API接口和多个预训练模型,可适应不同分辨率和应用场景。项目还提供了训练指南和数据集预处理脚本,方便研究人员进行自定义开发。
lidar-bonnetal - LiDAR点云语义分割开源框架
GithubLiDAR-BonnetalSemanticKITTI开源项目深度学习点云语义分割
LiDAR-Bonnetal是一个开源的LiDAR点云语义分割框架,使用距离图像作为中间表示。该项目提供训练管道和多个基于SemanticKITTI数据集的预训练模型。框架支持多种网络架构,如SqueezeNet和DarkNet变体,并提供了这些模型在SemanticKITTI数据集上的预训练权重和预测结果。虽然项目已归档,但其代码和模型仍可用于研究和学习LiDAR数据处理技术。研究者可以利用这些资源进行点云语义分割的相关研究。
DiverseShot AI - AI驱动的视频到3D高斯分布点云模型转换工具
3D重建AI工具Gaussian SplattingSpline点云视频处理
DiverseShot AI是一款专业的视频转3D高斯分布点云模型工具。它通过三步简化流程:多角度拍摄、AI训练处理、导出上传,将普通视频转化为浏览器可访问的逼真3D场景。该工具无需编码技能,为创作者提供了将日常视频转换为交互式3D内容的创新方法,适用于在线展示和虚拟现实等多种应用场景。用户可以轻松将现实世界的物体转化为沉浸式的3D体验,为各种在线展示和虚拟现实应用创造独特的视觉效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号