Project Icon

pyprobml

提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表

pyprobml项目提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表。该项目采用numpy、scipy、matplotlib、sklearn等标准库,以及JAX、Tensorflow和Torch等深度学习框架。用户可在本地运行或通过Colab使用,适合需要高性能计算的用户也支持Google Cloud Platform。本项目目前处于维护模式,有意贡献者可查看项目官网的贡献指南。

machine-learning-experiments - 交互式机器学习实验的集合
GithubJupyter笔记本TensorFlow卷积神经网络开源项目机器学习递归神经网络
该项目展示了一系列交互式机器学习实验,包括Jupyter笔记本来演示模型训练过程,以及在线演示页面来展示模型运行效果。涵盖多层感知机至卷积神经网络等多种技术,适合探索和学习各类机器学习方法。
mlcourse.ai - 综合性机器学习在线课程 理论实践并重
GithubOpenDataSciencemlcourse.ai开源项目数据分析机器学习课程算法
mlcourse.ai是OpenDataScience推出的开放式机器学习课程,涵盖数据分析到梯度提升等10个主题。课程通过理论讲解与实践作业相结合,帮助学习者掌握机器学习技能。提供多语言学习资源,包括文章、视频和编程作业,支持自定进度学习。另有付费作业包供选择,进一步提升学习效果。
openmlsys-zh - 现代机器学习系统设计与实现全面指南
GithubOpenMLSys实现经验开源项目机器学习系统设计原理
该开源项目全面介绍现代机器学习系统的设计和实现,涵盖编程接口、计算图、编译器技术、硬件加速等核心内容。同时探讨推荐系统、联邦学习、强化学习等前沿领域的系统实现。项目内容适合学生、研究人员和开发者,有助于读者深入理解机器学习系统,提升实际应用和开发能力。
relataly-public-python-tutorials - Python机器学习和深度学习项目合集
GithubJupyter notebooksPython开源项目机器学习深度学习生成式AI
本页面汇集了多个用于机器学习、深度学习和分析的Python Jupyter笔记本,涵盖股票预测、图像分类、异常检测、数据可视化等技术内容。每个文件都是一个独立的Python项目,并在博客中有详细介绍。还包括分布式计算、生成式AI和推荐系统等高级主题,提升业务应用能力。访问relataly.com获取更多信息。
reinforcement-learning-an-introduction - Sutton & Barto《强化学习: 介绍 (第2版)》的Python实现
GithubPythonReinforcement LearningSutton & Barto图像分析开源项目算法
该项目提供了Sutton和Barto所著《Reinforcement Learning: An Introduction(第2版)》的Python代码实现,涵盖各章节的示例和性能分析。项目专注于强化学习核心算法的实现和优化,适合打算深入了解和应用强化学习技术的开发者与研究人员。欢迎交流、贡献代码,提升项目质量与完整性。
www.mlcompendium.com - 机器学习与深度学习资源大全,免费公开,便于学习与作者互动
CompendiumDeep LearningGitBookGitHubGithubMachine Learning开源项目
项目为免费非营利教育工具,包含约500个机器学习及深度学习主题,如算法、特征选择、深度学习、NLP、音频处理等,帮助用户节省搜索时间,连接优秀作者。项目持续更新,支持社区贡献,致力于知识共享和教育普及。
pyro - 灵活且可扩展的概率编程库,支持大规模数据处理与自定义推理
GithubLinux FoundationPyTorchPyroUber AI开源项目深度概率编程
Pyro是基于PyTorch的深度概率编程库,具备灵活性和可扩展性。它能够表示任何可计算的概率分布,处理大规模数据集时具有较低的开销,并提供强大且可组合的抽象功能。Pyro由Uber AI最初开发,现由社区和Broad Institute团队积极维护,并在2019年成为Linux Foundation项目。其设计理念包括普适性、可扩展性和灵活性。通过高层抽象表达生成和推理模型,用户可以根据需求进行自动化或自定义推理。在机器学习和数据科学领域,Pyro提供了广泛的应用和支持。
Dive-into-DL-PyTorch - PyTorch实现与教程
项目将《动手学深度学习》原书的MXNet代码实现改为PyTorch,适合对深度学习感兴趣并希望使用PyTorch的用户。无需深度学习或机器学习背景,只需基础数学和编程知识。项目包含Jupyter Notebook代码和Markdown文档,通过Docsify部署,方便在线或本地浏览和运行。
GPflow - 用于构建 Gaussian process 模型的 Python 包
GPflowGaussian processGithubPythonTensorFlow开源项目
GPflow 是一个用于构建 Gaussian process 模型的 Python 包,支持组合内核和现代推断。基于 TensorFlow 2.4+ 和 TensorFlow Probability,GPflow 能在 GPU 上高效运行。项目提供详细文档、社区支持和多个实际使用示例,适用于各种机器学习任务。作为开源项目,GPflow 鼓励开发者贡献代码。
distributed-ml-patterns - 构建并优化分布式机器学习系统的方法
Argo WorkflowsDistributed Machine Learning PatternsGithubKubeflowKubernetes分布式机器学习开源项目
《Distributed Machine Learning Patterns》一书详细介绍了如何构建可扩展和高可靠性的机器学习系统。内容涵盖数据摄取、分布式训练、模型服务等方面,以及如何利用Kubernetes、TensorFlow、Kubeflow和Argo Workflows实现任务自动化。通过该书,读者将掌握关键概念与实际案例,并学会在大规模集群上管理和监控机器学习任务。本书适合具备基础机器学习知识的数据分析师、数据科学家和软件工程师。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号