Project Icon

pyprobml

提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表

pyprobml项目提供Python 3代码,用于复现《概率机器学习:入门》和《概率机器学习:高级主题》书中的图表。该项目采用numpy、scipy、matplotlib、sklearn等标准库,以及JAX、Tensorflow和Torch等深度学习框架。用户可在本地运行或通过Colab使用,适合需要高性能计算的用户也支持Google Cloud Platform。本项目目前处于维护模式,有意贡献者可查看项目官网的贡献指南。

machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
python-machine-learning-book-2nd-edition - Python机器学习与深度学习实用指南
GithubPackt PublishingPython Machine Learning开源项目数据科学机器学习深度学习
本书详细介绍机器学习和深度学习的核心概念,教你使用Python及其主要库(如Scikit-Learn和TensorFlow)进行数据处理、分类、回归和模型优化。书中包含丰富的示例代码和Jupyter笔记本,帮助读者理解复杂的数学理论和实现步骤,是数据科学家和工程师学习和提升机器学习技能的理想选择。
machine_learning_basics - 纯Python实现机器学习算法 助力深入理解基础原理
GitHubGithubPython开源项目数据预处理机器学习算法实现
该开源项目提供多种机器学习算法的纯Python实现,包括线性回归、决策树和k-means聚类等。项目注重展示算法底层结构,而非追求最高效率。另外还包含数据预处理教程,涵盖图像和数值/分类数据集处理。代码支持在线运行,便于快速实验。作为机器学习入门资源,适合想深入理解算法原理的学习者。
openlogprobs - Python库实现语言模型API对数概率提取
APIGithubPythonopenlogprobs开源项目概率提取语言模型
openlogprobs是一个Python库,用于从语言模型API中提取对数概率。它实现了多种算法,如topk搜索、精确解和二分查找,可从OpenAI等API中提取完整概率向量。该工具支持并行处理,提高了效率。openlogprobs主要用于语言模型反演研究,为学术研究提供支持。这个库易于安装和使用,适合自然语言处理研究人员使用。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Deep learningGithubMachine learning algorithmsPythonRandom ForestsSupport vector machine开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
Statistical-Learning-Method_Code - 《统计学习方法》算法实现与详细注释
Github代码实现开源项目无监督学习机器学习监督学习统计学习方法
本项目实现了《统计学习方法》一书中的机器学习算法,涵盖监督学习和无监督学习方法。代码采用Python编写,每行均有详细注释,关键部分标注公式出处。项目还提供相关博客链接,旨在帮助学习者深入理解算法原理,适合机器学习入门者参考学习。
Bayesian-Neural-Networks - 在PyTorch中实现的贝叶斯神经网络近似推断方法
Bayesian Neural NetworksGithubMNIST分类实验Pytorch回归实验开源项目近似推断方法
项目在PyTorch框架下实现了多种贝叶斯神经网络的近似推断方法,包括Bayes by Backprop、MC Dropout、SGLD和Kronecker-Factorised Laplace。这些方法适用于同质和异质回归实验及MNIST分类实验。项目提供了模型训练脚本、Colab笔记本和实验结果的可视化工具,方便用户进行模型训练和评估。所有依赖和数据集已在笔记本中预设,并支持免费GPU运行平台,帮助用户轻松上手。
machine-learning - 机器学习入门,掌握Python与数据分析
GithubMachine LearningPython开源项目数据分析深度学习统计
这个开源项目旨在帮助自学者系统地学习机器学习。内容涵盖Python基础、数据分析、数据可视化、数学和统计,以及机器学习和深度学习的多个在线课程和教程。通过推荐的YouTube视频、Coursera课程和开源项目,提供从基础到高级的学习资源,帮助学习者提升编程与数据分析能力,并逐步进入机器学习和深度学习的领域。
pytorch-book - PyTorch 1.8入门与高级应用指南
GithubPyTorch开源项目深度学习生成对抗网络神经网络自然语言处理
这本书提供了《深度学习框架PyTorch:入门与实践(第2版)》的对应代码,基于PyTorch 1.8编写,内容涵盖基础使用、高级扩展和实战应用三大模块。读者可以学习从安装PyTorch、使用Tensor与自动微分系统、构建神经网络模块到进行数据加载与GPU加速等操作。此外,还讲解了向量化、分布式计算及CUDA扩展的高级技术,并通过图像分类、生成对抗网络、自然语言处理、风格迁移及目标检测等实战项目,深入理解并应用PyTorch进行深度学习开发。
fastbook - fastai与PyTorch的深度学习教程
GithubGoogle ColabMOOCPyTorchfastai开源项目深度学习
本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号