Project Icon

dowhy

支持多种因果推理任务的Python库

DoWhy是一个Python因果推理库,集成了图形因果模型和潜在结果框架。它提供统一接口支持因果效应估计、根因分析和反事实推理等多种任务。该库注重结果可解释性,并具有反驳和验证功能,增强了因果推理的稳健性。DoWhy适用于客户流失分析、营销效果评估和异常归因等多个领域。

causalml - Python因果推断与提升建模库:causalml
CausalMLGithub个性化推荐因果推断开源项目机器学习营销优化
causalml是一个Python库,集成了机器学习算法用于提升建模和因果推断。它提供标准接口,支持从实验或观察数据中估计条件平均处理效应和个体处理效应。该库适用于广告定向优化和个性化推荐等场景,有助于提高营销效果。causalml实现了多种因果推断方法,并配有详细文档和示例,便于开发者学习和应用。
causal-learn - 强大的Python因果发现工具包
GithubPython包causal-learn因果发现开源项目数据分析机器学习
causal-learn是一个开源的Python因果发现库,实现了多种经典和前沿的因果发现算法。它提供了基于约束、基于评分、基于函数因果模型等方法,以及独立性测试、评分函数等实用工具。该库文档完善,示例丰富,适用于研究人员和数据科学家进行因果关系分析和算法开发。causal-learn是Tetrad项目的Python版本和扩展,由CMU-CLeaR小组积极开发和维护,并提供了丰富的基准数据集供社区使用。
causallib - 通过观察性数据的因果推断分析
GithubPython包causallib因果推断开源项目机器学习模型评估
Causallib是一个Python包,提供统一的因果推断方法,灵感来自scikit-learn API,支持复杂机器学习模型的集成。用户可以进行有适应性的模块化因果建模,提供更准确的效果估计。该包还包括评估工具,用于诊断模型表现差异,适用于各种治疗策略和潜在结果预测。研究人员可以使用causallib从现实世界的观察性数据中推断干预措施的因果影响,适用于医疗和社会科学等领域。更多信息请访问causallib文档。
causality-lab - 开源因果发现和推理算法库
Github因果发现图结构学习开源项目神经网络算法统计测试
Causality Lab是一个开源的因果发现和推理算法库,包含多种先进算法如PC、RAI、FCI和ICD等。该项目提供了模拟数据生成、图形模型处理和性能评估工具,支持开发和测试新的因果结构学习算法。最新的CLEANN算法还可为预训练Transformer模型的输出生成因果解释,为因果推理研究提供了全面支持。
whylogs - 开源数据日志库 追踪分析数据变化与质量
GithubWhyLabswhylogs开源项目数据日志数据概要机器学习监控
whylogs是一款开源数据日志库,可生成数据集摘要(whylogs profiles)。它能追踪数据变化、设置约束条件、快速可视化关键统计信息。whylogs profiles具有高效、可定制、可合并的特点,支持多种数据类型。该库集成了AWS S3、Apache Airflow等工具,可用于数据漂移检测、质量验证和探索性分析等任务,为数据科学家和工程师提供有力支持。
EconML - Python因果推断库 基于机器学习的异质性效应估计
EconMLGithubPython因果推断开源项目异质性处理效应机器学习
EconML是一个Python库,结合机器学习和计量经济学方法,用于从观测数据中估计异质性治疗效应。该库支持多种建模技术,可捕捉效应异质性并保持因果解释,同时提供置信区间。EconML基于标准Python数据科学生态系统构建,为复杂的因果推断问题提供统一的API和自动化解决方案。
DiCE - 机器学习模型的多样性反事实解释方法
DiCEGithubPython反事实解释开源项目机器学习模型解释
DiCE提供机器学习模型的反事实(CF)解释,通过生成特征扰动版本帮助探索模型的假设情景。适用于财务、医疗、教育等领域,支持生成多样性和接近原始输入的解释。提供Python支持,随时可通过PyPI和Conda安装。其优化算法和简单约束功能确保对各种ML模型的广泛适应性。
deepdow - 融合深度学习的投资组合优化框架
GithubPython包开源项目投资组合优化权重分配梯度下降深度学习
deepdow是一个Python开源项目,致力于连接投资组合优化和深度学习。它通过构建完全可微分的层级管道,实现市场预测和优化问题设计的融合。该框架支持单次前向传递完成权重分配,集成可微凸优化技术,并提供多种数据加载策略。deepdow适用于CPU和GPU环境,为研究人员提供了灵活的实验平台。
tfcausalimpact - TensorFlow实现的因果影响分析库
CausalImpactGithubTensorFlow因果推断开源项目时间序列分析贝叶斯结构模型
tfcausalimpact是一个基于TensorFlow实现的因果影响分析库。该工具利用贝叶斯结构模型分析干预前后的数据,评估干预效果。支持Python 3.7-3.11,提供统计结果输出和可视化功能。通过变分推断和HMC两种拟合方法,在分析精度和计算性能间实现平衡。适用于研究人员和数据科学家进行因果推断分析,操作简便,功能强大。
trustworthyAI - 因果结构学习工具链与研究资源
GithubgCastle可信AI因果发现因果结构学习开源项目数据集
该项目提供了全面的因果学习和评估工具链。它包含gCastle工具箱、真实世界数据集、竞赛基线和最新研究成果。该项目涵盖基于梯度的因果发现算法、CausalVAE等实现,为研究人员和开发者提供了可信AI领域的学习和实践资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号