Project Icon

liquid_time_constant_networks

Liquid Time-Constant Networks (LTC) 的代码库

本项目提供了Liquid time-constant Networks等连续时间模型的官方训练资源。支持使用TensorFlow和Python进行模型训练与评估,适用于手势分割、房间占用检测、交通量预测等多种数据集。通过详细的步骤和参数设置指导,科研人员和开发者可以优化并存储训练结果,深入探索连续时间模型的应用。

InceptionTime - 先进的时间序列分类深度学习模型
GithubInceptionTimeInception模块UCR/UEA数据集开源项目时间序列分类深度学习
InceptionTime是一个基于Inception模块架构的时间序列分类深度学习模型。该项目在85个UCR/UEA数据集上展现出优秀的分类性能,并提供了完整的模型实现代码、实验复现指南和详细结果。研究显示,InceptionTime在分类准确率和训练效率方面都具有显著优势,为时间序列分类研究提供了有力的基准。
test-time-adaptation - 多场景计算机视觉模型在线测试时适应框架
GithubPyTorch在线测试时适应开源项目模型微调深度学习计算机视觉
该项目是一个基于PyTorch的开源在线测试时适应框架。支持CIFAR、ImageNet等多个数据集变体和预训练模型,实现了TENT、MEMO、EATA等多种测试时适应方法。框架采用模块化设计,易于扩展新方法,并提供混合精度训练功能。此外,项目还包含全面的基准测试结果和图像分割任务实验。
deep-learning-v2-pytorch - 深度学习教程与项目实战指南
Deep LearningGithubPyTorch卷积神经网络开源项目生成对抗网络神经网络
本仓库提供 Udacity 深度学习 v7 纳米学位课程的相关资料,包括各种深度学习主题的教程笔记本,涉及卷积神经网络、循环神经网络和生成对抗网络等模型的实现。内容涵盖权重初始化、批量归一化等技术,用户还可以访问项目起始代码,并学习在 AWS SageMaker 上部署模型。
Time-series-classification-and-clustering-with-Reservoir-Computing - 基于储层计算的时间序列分析框架
GithubReservoir Computing开源项目时间序列分类时间序列聚类机器学习神经网络
这个开源项目利用储层计算技术,实现了时间序列数据的分类、聚类和预测功能。它支持处理单变量和多变量时间序列,并提供了易用的Python库。项目包含多个功能模块、丰富的数据集和高级示例。其特有的储层模型空间表示方法在处理复杂时间序列任务时表现出色。
rllte - 强化学习研究和应用的长期演进项目
GithubRLLTE工具包开源项目强化学习生态系统算法实现
RLLTE项目受到电信长期演进标准的启发,旨在为强化学习研究与应用提供开发组件和标准。项目不仅提供高质量的算法实现,还作为开发算法的实用工具包。RLLTE支持模块化设计、优化硬件加速、兼容多种计算设备和自定义环境,且包含大量可重复使用的基准。
pytorch-forecasting - 前沿的时间序列预测工具包,提供灵活的高层API
GithubPyTorch ForecastingPyTorch Lightning开源项目时间序列预测深度学习神经网络
PyTorch Forecasting 是一个基于 PyTorch 的时间序列预测包,适用于实际应用和研究。它支持多种神经网络架构及自动日志记录,利用 PyTorch Lightning 实现多 GPU/CPU 的扩展训练,并内置模型解释功能。关键特性包括时间序列数据集类、基本模型类、增强的神经网络架构、多视角时间序列指标和超参数优化。安装简便,支持 pip 和 conda,文档详尽,并包含模型比较和使用案例。
imgclsmob - 深度学习卷积网络的研究与实现,涵盖多种框架和预训练模型
GithubMXNetPyTorchTensorFlowcomputer visiondeep learning开源项目
此存储库专注于计算机视觉领域的卷积网络研究,包含多种分类、分割、检测和姿态估计模型的实现,支持MXNet/Gluon、PyTorch、Chainer、Keras和TensorFlow等框架。提供了训练、评估和转换的脚本以及针对不同框架的PIP包,模型预训练于ImageNet、CIFAR-10/100、SVHN等数据集,能够自动加载预训练权重。
stock-prediction-deep-neural-learning - 基于深度学习的股票价格预测系统
GithubLSTMyFinance开源项目时间序列预测深度神经网络股票预测
这个开源项目利用LSTM神经网络和TensorFlow实现股票价格时间序列预测。它通过yFinance库获取市场数据,分析股票信息、持有人等关键数据。该系统旨在识别股票价格模式,提高预测准确性,为投资决策提供参考。这是一个面向股市分析的人工智能解决方案。
cond_rnn - 条件时间序列预测的深度学习框架
ConditionalRecurrentGithubKerasRNNTensorFlow开源项目时间序列
ConditionalRecurrent是一个兼容Keras的包装器,用于基于时间不变数据进行条件时间序列预测。它支持各种循环层,通过学习条件表示来初始化RNN状态,有效模拟P(x_{t+1}|x_{0:t}, cond)。该库适用于包含外部输入的时间序列数据,如天气预测,为整合时间不变条件信息提供了实用的解决方案。
flow-forecast - 开源时间序列深度学习框架,支持最新模型和云端集成
Flow ForecastGithubtransformer开源开源项目时间序列预测深度学习
Flow Forecast 是一个开源时间序列预测深度学习框架,提供最新的Transformer、注意力模型、GRU等技术,并具有易于理解的解释指标、云集成和模型服务功能。该框架是首个支持Transformer模型的时间序列框架,适用于流量预测、分类和异常检测。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号