Project Icon

cuml

高性能GPU机器学习库

cuML是RAPIDS生态系统中的GPU加速机器学习库,提供与scikit-learn兼容的API。它支持在GPU上执行传统表格机器学习任务,无需深入CUDA编程。对大型数据集,cuML的性能可比CPU实现提升10-50倍。该库还支持多GPU和多节点多GPU操作,并通过Dask实现分布式计算。

machinelearning-samples - 专为.NET开发者设计的跨平台的开源机器学习框架
GithubML.NETMLOps开源开源项目机器学习跨平台
ML.NET是一个跨平台的开源机器学习框架,专为.NET开发者设计。它提供丰富的样例和教程,涵盖二分类、多分类、推荐系统、回归、时间序列预测、异常检测和聚类等任务,方便开发者将机器学习模型集成至现有或新建的.NET应用中。项目还提供了完整的端到端应用示例,包括Web和桌面应用,扩展了机器学习的实际应用场景。
scicloj.ml - Clojure机器学习生态系统 强大灵活的数据科学工具
ClojureGithubpipelines开源项目数据处理机器学习模型训练
Scicloj.ml是一个为Clojure语言打造的全面机器学习生态系统。它整合了多个成熟的数据科学库,提供标准化的分类、回归和无监督学习模型接口。该库支持数据驱动的机器学习流水线构建,内置复杂的交叉验证功能,并具备灵活的开放架构,可轻松集成各类ML模型。Scicloj.ml还提供丰富的数据预处理工具,并允许通过回调机制实现实验跟踪,为Clojure开发者提供了强大而灵活的机器学习解决方案。
mmcv - OpenMMLab开源计算机视觉基础库
GithubMMCVOpenMMLabPyTorch开源项目深度学习计算机视觉
MMCV是一个开源的计算机视觉基础库,提供图像和视频处理、数据转换、CNN架构等功能。支持多平台,包括Linux、Windows和macOS。库中包含高质量的CPU和CUDA操作实现,并提供完整版和精简版两种安装选项。MMCV需要Python 3.7+环境,与PyTorch深度学习框架兼容。
pycm - 是一个用 Python 编写的支持输入数据向量和直接矩阵的多类混淆矩阵库
PyCM 是一个支持输入数据向量和直接矩阵的多类混淆矩阵库,是数据科学家进行预测模型和各类分类器准确评估的理想工具。该项目支持绝大多数的类和全面的统计参数,适用于广泛的数据科学应用和模型评估。
mlr - R语言的综合机器学习工具包
GithubR语言mlr开源项目数据分析机器学习算法
mlr是一个功能丰富的R语言机器学习框架,为分类、回归、聚类和生存分析等任务提供标准化接口。它支持模型重采样、超参数优化和特征选择,并具备可视化和并行计算能力。尽管已停止新功能开发,mlr仍是一个成熟稳定的工具包,适用于多种数据分析场景。
awesome-mlops - 多种自动化机器学习、数据处理、模型部署工具集合
GithubMLOps开源项目数据处理数据管理模型服务自动化机器学习
发掘和运用顶尖MLOps工具:该项目汇集了多种自动化机器学习、数据处理、模型部署工具,供数据科学家和机器学习工程师选择使用,以简化机器学习流程,优化生产活动。
LightGBM - 高效梯度提升框架 支持大规模数据并行学习
GithubLightGBM决策树开源项目数据分析机器学习梯度提升
LightGBM是一个高效的梯度提升框架,采用树形学习算法。它具有训练速度快、内存消耗低、准确性高的特点,支持并行、分布式和GPU学习,可处理大规模数据。这个开源项目在机器学习竞赛中应用广泛,在公开数据集上的表现优于多个现有框架。LightGBM为用户提供了详细文档和丰富示例,适用于多种机器学习任务。
CogDL - 应用于节点分类、图分类等任务的图深度学习工具包
CogDLGNNGPU优化Github图深度学习开源项目自动机器学习
CogDL是一个应用于节点分类、图分类等任务的图深度学习工具包。它具备高效性、易用性和可扩展性的特点,通过提供优化的操作符加快训练速度并节省GPU内存。CogDL还提供易用的API,并支持广泛的模型和数据集。最新版新增了图自监督学习示例和混合精度训练功能,适用于多种图神经网络分析任务。
zenml-projects - ZenML构建的生产级机器学习项目集合
GithubMLOpsZenML开源框架开源项目机器学习项目生产级ML用例
ZenML Projects是一个展示使用ZenML构建的生产级机器学习用例集合。该仓库提供了涵盖时间序列、表格数据、计算机视觉等多个ML领域的现成MLOps工作流程。开发者可以直接使用或根据需求调整这些解决方案,快速启动机器学习项目。仓库包含多个由ZenML团队和社区维护的示例项目,覆盖了常见ML应用场景。
dlib - 现代C++机器学习工具包,实现高效复杂软件开发
C++GithubPython APIdlib开源项目机器学习编译
dlib是一个功能丰富的C++工具库,专注于机器学习解决方案,支持快速编译和高效运算。提供完整的Python集成和标准Boost许可,适用于各类项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号