Project Icon

BARS

推荐系统开放基准测试项目

BARS项目致力于解决推荐系统领域缺乏统一基准测试的问题。它通过开放式基准测试提高研究可重复性和结果一致性。目前涵盖CTR预测和候选项匹配任务,未来将扩展到列表重排序和多任务推荐领域。该项目鼓励学术界和业界参与,共同推动推荐系统研究的进步。

recommender_system_with_Python - Python推荐系统的实现与应用实例
GithubPython协同过滤开源项目推荐系统深度学习矩阵分解
详细讲解使用Python实现推荐系统的方法与案例,涵盖内容过滤、协作过滤和矩阵分解等基本理论,并通过实际项目展示这些技术的应用。此外,还介绍了基于Naver新闻数据的推荐系统、使用Keras和深度学习技术的实例,以及利用LangChain和GPT-4o提升推荐系统解释性的案例。更多代码及详细说明请参阅相关博客文章。
buffalo - 高性能开源推荐系统框架
BuffaloGithubKakao开源项目推荐系统高性能
Buffalo是一款由Kakao开发的开源推荐系统框架,具有高性能和可扩展性。它针对CPU和SSD进行了优化,同时在GPU上也有良好表现,能够有效利用系统资源。Buffalo已在多个Kakao服务的生产环境中得到验证,支持Python 3.8+,需要cmake 3.17+和支持C++14的gcc/g++编译器。该项目采用Apache 2许可证,为开发者提供了灵活的使用空间。
bigcodebench - 高难度代码生成基准测试评估LLM编程能力
BigCodeBenchGithub代码生成大语言模型开源项目编程能力评估基准
BigCodeBench是一个具有挑战性的代码生成基准测试,用于评估大型语言模型的实际编程能力。它提供复杂指令和多样函数调用,包括数据集、生成和评估脚本。基于EvalPlus框架,BigCodeBench实现精确评估和排名,提供预生成样本以加速研究。支持多种评估环境,采用unittest进行代码测试,为研究人员提供全面工具。
Auto-GPT-Benchmarks - 自动化智能代理基准测试框架评估代码检索记忆和安全性能
AI代理Auto-GPTGithub基准测试开源项目性能评估排名
Auto-GPT-Benchmarks 是一个自动化智能代理基准测试框架,用于客观评估代理在代码、检索、记忆和安全性方面的性能。框架提供详细评分和排名,有助于开发者优化代理性能。尽管该项目已被弃用,其功能已转移至 AutoGPT 主仓库的 benchmark 文件夹。最新测试结果显示 Beebot、mini-agi 和 Auto-GPT 表现最佳。
llmperf-leaderboard - LLM推理服务性能基准测试与比较
GithubLLMPerfLLM推理提供商吞吐量响应时间开源项目性能基准测试
LLMPerf Leaderboard 项目对多家LLM推理服务进行性能评测,主要衡量输出令牌吞吐量和首个令牌响应时间(TTFT)。测试涵盖Llama-2系列的7B、13B和70B聊天模型,为开发者提供客观透明的性能数据和可复现的测试方法,有助于选择合适的LLM服务。
primeqa - PrimeQA:多语言问答系统的开源研究和开发平台
GithubPrimeQA信息检索多语言问答开源项目机器阅读理解问题生成
PrimeQA是一个开源平台,帮助研究人员和开发人员训练先进的问答模型。用户可以在PrimeQA上复制NLP会议中的实验,下载预训练模型并应用于自定义数据。该平台支持信息检索、多语言阅读理解、问题生成及检索增强的生成技术。PrimeQA在多个排行榜中名列前茅,整合Transformers工具包以提供强大的问答功能,满足领先的研究和开发需求。
benchmark - Google Benchmark C++性能基准测试库
BenchmarkC++Github代码优化开源库开源项目性能测试
Google Benchmark是一个C++性能基准测试库,用于精确测量代码片段的执行效率。它支持C++03以上版本,提供简洁API便于开发者对比代码性能。该库具备详细文档、跨平台兼容性和CMake集成,是一个强大的代码性能分析工具。
RecTools - 功能丰富的推荐系统开发Python库
GithubPython库RecTools开源项目推荐系统数据处理机器学习
RecTools是一个专为推荐系统开发设计的Python库。它集成了数据处理、指标计算、多种推荐模型和模型选择框架。支持矩阵分解、最近邻和神经网络等算法,并可利用用户和物品特征。RecTools注重易用性和灵活性,有助于快速构建和部署推荐系统。
recommenders - 利用TensorFlow构建推荐系统模型的库
GithubKerasTensorFlow Recommenders开源项目推荐系统数据准备模型训练
TensorFlow Recommenders 是一款利用TensorFlow构建推荐系统模型的库。它涵盖了数据准备、模型构建、训练、评估和部署的完整工作流程,基于Keras,旨在为用户提供易学且灵活的体验,能够支持构建复杂模型。只需确保安装TensorFlow 2.x,并使用pip安装即可开始使用。详细的文档和教程能够帮助用户快速入门。
bert_score - 先进的自然语言生成评估工具
BERTScoreGithub开源项目文本生成评估机器学习自然语言处理预训练模型
BERTScore是一种创新的自然语言生成评估工具,基于BERT预训练模型的上下文嵌入技术。它通过计算候选句和参考句中单词的余弦相似度,得出精确度、召回率和F1分数。研究表明,BERTScore在句子级和系统级评估中与人工判断具有高度相关性。该项目支持130多种预训练模型,适用于多种语言的文本生成评估。BERTScore提供Python接口和命令行工具,操作简便,是自然语言处理领域的有力辅助工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号