Project Icon

torchdiffeq

可微分常微分方程求解器库 PyTorch实现

torchdiffeq是基于PyTorch的常微分方程(ODE)求解器库,支持通过伴随方法进行ODE解的反向传播,保持恒定内存开销。该库兼容GPU加速,提供多种求解算法,包括自适应和固定步长方法。支持可微分事件处理功能,适用于深度学习研究。torchdiffeq为研究人员提供了实现和探索基于ODE的机器学习模型的工具。

torchquad - 基于GPU加速的开源数值积分框架
GPUGithubPyTorchtorchquad开源项目数值积分机器学习
torchquad是一个开源的高性能数值积分框架,支持PyTorch、JAX和Tensorflow等多个后端。该框架针对GPU进行了优化,能有效处理高维积分问题,并在GPU上展现出优异的扩展性。torchquad提供多种积分方法,支持自动微分,适用于机器学习和科学计算等领域。其简洁的API设计使研究人员和开发者能够高效地完成复杂的数值积分任务。
modular-diffusion - 灵活可扩展的PyTorch扩散模型框架
GithubModular DiffusionPyTorch开源项目扩散模型机器学习模块化设计
Modular Diffusion是一个基于PyTorch的模块化扩散模型框架,为设计和训练自定义扩散模型提供了简洁的API。该框架支持多种噪声类型、调度类型、去噪网络和损失函数,并提供了预构建模块库。Modular Diffusion适用于图像生成和非自回归文本合成等多种应用场景,适合AI研究人员和爱好者使用。其模块化设计简化了新型扩散模型的创建和实验过程。
pytorch3d - 基于PyTorch的高效3D计算机视觉研究库
3D计算机视觉GithubPyTorch3D三角网格可微分渲染开源项目深度学习
PyTorch3D是一个基于PyTorch的3D计算机视觉研究库,提供高效、可复用的组件。主要功能包括三角网格操作、可微分渲染和隐式表示框架。该库与深度学习方法无缝集成,支持异构数据批处理、可微分运算和GPU加速。PyTorch3D已应用于多个研究项目,并提供全面的教程和文档。
med-seg-diff-pytorch - PyTorch实现的医学图像分割扩散模型
DDPMGithubPytorch医学图像分割开源项目扩散概率模型深度学习
med-seg-diff-pytorch是一个基于PyTorch的医学图像分割框架,采用扩散概率模型(DDPM)和特征级条件增强技术。该项目提供简易安装和使用方法,支持自定义数据集训练,并计划增加更多功能。它为医学图像分析领域提供了一个功能强大、使用灵活的开源工具。
pytorch-dnc - PyTorch实现的差分神经计算机及相关模型库
DNCGithubSAMSDNC开源项目神经网络记忆增强
这个PyTorch库实现了差分神经计算机(DNC)、稀疏访问存储器(SAM)和稀疏差分神经计算机(SDNC)等模型。它提供灵活API用于构建和训练这些神经网络,支持多层控制器、共享内存等配置。库中还包含复制和加法等基准任务,以及内存可视化功能,有助于开发和评估基于外部存储的神经网络模型。
stable-diffusion-pytorch - Stable Diffusion PyTorch实现,支持自定义参数
该项目提供简洁且易于修改的Stable Diffusion PyTorch实现,支持文本生成图像与图像生成图像的操作,允许自定义生成参数、调整指导规模和选择生成步数等多种功能。依赖PyTorch、Numpy和Pillow等库,适合需要高度控制与灵活性的深度学习项目。通过Colab可以快速开始使用,并且借鉴了多个知名开源库,是学习和实践的理想资源。
k-diffusion - 扩散模型框架支持多种采样算法和模型架构
GithubPyTorchk-diffusiontransformer开源项目注意力机制生成模型
k-diffusion是一个基于PyTorch的扩散模型实现框架。它支持分层Transformer模型、多种采样算法和Min-SNR损失加权。该框架提供模型包装器、CLIP引导采样功能,以及对数似然、FID和KID等评估指标的计算。k-diffusion为扩散模型研究和应用提供了实用工具。
pytorch - 能GPU加速的Python深度学习平台
GPU加速PyTorch深度学习神经网络
PyTorch是一个开源的提供强大GPU加速的张量计算和深度神经网络平台,基于动态autograd系统设计。它不仅支持广泛的科学计算需求,易于使用和扩展,还可以与Python的主流科学包如NumPy、SciPy无缝集成,是进行深度学习和AI研究的理想工具。
Deep-reinforcement-learning-with-pytorch - 深度强化学习PyTorch实现与代码示例
DQNDeep Reinforcement LearningGithubGymTD3pytorch开源项目
本项目提供经典和前沿的深度强化学习算法PyTorch实现,包括DQN、DDPG、PPO等。项目持续更新并维护,适用于Anaconda虚拟环境管理。详细的安装步骤和测试方法确保用户能顺利运行代码,文档中还提供了相关论文和代码链接,便于深入学习研究。
pytorch-rl - Pytorch中的深度强化学习算法实现
GithubOpenAI GymPytorch开源项目强化学习机器人任务深度学习
pytorch-rl项目在Pytorch中实现了多种深度强化学习算法,适用于连续动作空间。用户可以在CPU或GPU上高效训练这些算法,并与OpenAI Gym无缝集成。支持的算法包括DQN、DDPG、PPO等,涵盖环境建模和参数空间噪声探索等功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号