Project Icon

MLAlgorithms

机器学习算法从零实现的简洁教程

该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。

MachineLearningWithMe - 全面深入的机器学习算法实践教程
Github人工智能开源项目数据分析机器学习模型算法
MachineLearningWithMe是一个系统化的机器学习教程项目,内容涵盖从环境配置到高级算法的多个方面。项目详细讲解并实现了线性回归、逻辑回归、K近邻、朴素贝叶斯、决策树、支持向量机、聚类和降维等核心算法。特别强调动手实践,指导读者从零开始实现各类算法,并提供泰坦尼克号生还预测等实际案例。此外还包括模型评估、特征工程和集成学习等进阶内容,适合初学到中级水平的学习者深入探索机器学习领域。
machine_learning_basics - 纯Python实现机器学习算法 助力深入理解基础原理
GitHubGithubPython开源项目数据预处理机器学习算法实现
该开源项目提供多种机器学习算法的纯Python实现,包括线性回归、决策树和k-means聚类等。项目注重展示算法底层结构,而非追求最高效率。另外还包含数据预处理教程,涵盖图像和数值/分类数据集处理。代码支持在线运行,便于快速实验。作为机器学习入门资源,适合想深入理解算法原理的学习者。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
GithubMachine LearningPythonReinforcement LearningSupervised LearningUnsupervised Learning开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
tutorial - 机器学习和深度神经网络算法综合教程
Github人工智能开源项目机器学习深度学习神经网络算法
该教程全面介绍机器学习和深度学习算法,涵盖从基础到高级的内容。包括环境搭建、入门指南、框架介绍和核心概念。详细讲解BP神经网络、SVM、决策树等多种算法,以及回归、聚类和贝叶斯等模型。提供丰富的理论知识和实践指导,适合系统学习AI和算法的开发者参考。
zero-to-mastery-ml - 从零到精通的机器学习全面指南
GithubScikit-LearnTensorFlowZero to Mastery Machine Learning开源项目数据科学机器学习
本教程涵盖了机器学习从基础到高级的完整学习路径。内容包括代码示例、笔记本、图像和其他资料,均可通过Udemy和zerotomastery.io获取。课程内容包括六步机器学习建模框架、数据科学工具、结构化数据项目、神经网络及深度学习。最新的在线课程材料正在开发中,预计2024年发布更新。此外,还提供学生分享的学习笔记,丰富学习资源。
Machine-Learning-is-ALL-You-Need - 实现流行机器学习和深度学习算法的各种方法
GithubMachine LearningPython代码实现开源项目深度学习罗辑学习
这个仓库致力于使用纯Python和各种开源框架实现热门的机器学习和深度学习算法,涵盖分类、回归、强化学习、计算机视觉、自然语言处理和图神经网络等多个领域。提供灵活的代码切换选项,多种实现方法可以帮助用户深入理解每种算法的内部机制以及成功原因。
ml-course - 机器学习课程介绍,涵盖基础理论、实操任务和丰富资源
Deep LearningGithubGradient boostingMachine LearningNaive BayeskNN开源项目
这个机器学习课程介绍了从朴素贝叶斯和kNN到深度学习的基础知识。页面提供了详细的课程笔记、视频资料和练习题。适合初学者和进阶学习者,内容包括线性回归、支持向量机和梯度提升等,是系统学习机器学习的理想资源。
Machine_Learning_and_Deep_Learning - 完整的机器学习和深度学习学习路径
GithubPython编程开源项目数据分析机器学习深度学习统计学
该项目提供了从Python基础到机器学习算法的全面学习路径,包含多个模块如数据分析、统计和机器学习。通过教程、代码示例和案例研究,帮助学习者掌握数据科学和AI的核心知识。这是一个开源项目,欢迎社区贡献。
Statistical-Learning-Method_Code - 《统计学习方法》算法实现与详细注释
Github代码实现开源项目无监督学习机器学习监督学习统计学习方法
本项目实现了《统计学习方法》一书中的机器学习算法,涵盖监督学习和无监督学习方法。代码采用Python编写,每行均有详细注释,关键部分标注公式出处。项目还提供相关博客链接,旨在帮助学习者深入理解算法原理,适合机器学习入门者参考学习。
Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号