Project Icon

zero-bubble-pipeline-parallelism

流水线并行算法创新 实现零气泡和内存优化

该项目开发了两种新型流水线并行算法:零气泡和可控内存流水线并行。零气泡算法几乎消除了流水线并行的气泡,保持同步语义;可控内存算法显著降低激活内存使用,同时维持或提高吞吐量。项目实现了ZB1P、ZB2P和ZBV等多种调度策略,平衡吞吐量和内存效率。另外,项目还采用优化器后验证等技术来进一步增强性能。

awesome-pipeline - 数据流水线工具集合 简化复杂工作流程
Github工作流开源项目数据处理框架管道自动化
Awesome Pipeline收录了多种数据流水线工具,包括框架、库和平台。这些工具可帮助构建和优化各类数据处理流程,从简单的线性工作流到分布式计算均有涉及。该项目为不同规模的数据处理需求提供了丰富的开源解决方案。
ploomber - 快速构建和部署数据流水线的开源框架
GithubJupyterPloomber开源项目数据管道机器学习部署
Ploomber是一个开源的数据流水线构建框架,支持多种主流编辑器进行交互式开发。它可以无缝部署到Kubernetes、Airflow等平台,提供YAML和Python API,具备自动缓存和笔记本重构功能。Ploomber适用于各级数据科学工作者,能显著提升数据处理效率。
PiPPy - PyTorch模型自动化管道并行工具
GithubPiPPyPyTorchpipeline parallelism并行计算开源项目模型扩展
PiPPy是一个为PyTorch模型提供自动化管道并行功能的开源工具。它通过自动拆分模型代码和处理复杂拓扑结构,简化了管道并行的实现过程。PiPPy支持跨主机并行、与其他并行方案结合,以及多种调度策略。该工具能够帮助研究人员和开发者在不大幅修改原有代码的情况下,实现PyTorch模型的高效扩展。
batchflow - 高效灵活的大规模数据处理和机器学习框架
BatchFlowGithub开源项目数据处理数据流水线机器学习神经网络
BatchFlow是一个专为大规模数据处理和复杂机器学习流程设计的Python库。它提供灵活的批处理生成、确定性和随机管道、数据集合并等功能。支持多种深度学习模型,并具有丰富的层和辅助函数,方便自定义模型。其懒加载机制和高效批处理策略适用于处理超出内存容量的大型数据集,是数据科学和机器学习项目的理想工具。
zero_nlp - 中文NLP训练与应用框架
Githubpytorchzero_nlp中文NLP大模型开源项目模型训练
zero_nlp是基于pytorch和transformers的中文NLP框架,支持从数据处理到模型部署的整个工作流程。它特别适用于处理大数据集、训练和部署多卡串联大模型,支持包括gpt2、clip在内的丰富模型类型,适用于文本分类、生成及多模态处理等多种任务。
airy - 流式数据处理框架赋能 AI 模型训练与实时分析
Airy CoreGithub开源开源项目数据平台机器学习流处理
Airy Core 是一个开源的流式数据处理框架,为 AI 模型训练和实时分析提供支持。它集成了多种数据源,如 Facebook、WhatsApp 等社交平台,并支持自定义连接器。Airy Core 能够融合历史和实时数据流,简化数据摄取流程,并通过预构建连接器从 Kafka 直接消费数据。基于 Apache Kafka 构建的 Airy Core 可同时处理海量事件,实现数据的实时流式传输。这一框架不仅简化了部署过程,还缩短了开发周期,同时增强了基础设施和应用的稳定性。
deepflow - 适用于云原生与AI应用的深度可观测性平台
AI应用DeepFlowGithubeBPF云原生开源项目智能编码
DeepFlow项目为复杂的云原生与AI应用提供深度可观测性,通过eBPF实现零代码数据采集,涵盖全栈关联和高效访问所有观测数据。主要功能包括通用服务地图、零代码分布式追踪、连续函数分析和与主流观测堆栈的无缝集成。DeepFlow帮助开发者简化代码监测,为DevOps/SRE团队提供全面的监控与诊断能力。
DeepSpeed - 一个深度学习优化库,专为大规模模型训练和推理设计
DeepSpeedGithub分布式训练大规模模型训练开源项目模型压缩模型推理
DeepSpeed 是一个深度学习优化软件套件,专为大规模模型训练和推理设计,能显著优化系统性能和降低成本。它支持亿级至万亿级参数的高效管理,兼容各种计算环境,从资源受限的GPU系统到庞大的GPU集群。此外,DeepSpeed 在模型压缩和推理领域亦取得创新成就,提供极低的延迟和极高的处理速率。
mlx_parallm - 为Apple Silicon设备实现高效并行推理
Apple SiliconGithubMLX ParaLLM并行推理开源项目批处理KV缓存语言模型
MLX ParaLLM是一个为Apple Silicon设备开发的开源项目,利用MLX框架实现批处理KV缓存技术,从而提高并行推理效率。项目支持Meta-Llama、Phi-3和Gemma等多种模型,兼容量化和float16格式。通过batch_generate方法,MLX ParaLLM实现自动填充、提示模板格式化和多种采样策略,适用于大规模并行文本生成任务。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号