Project Icon

zero-bubble-pipeline-parallelism

流水线并行算法创新 实现零气泡和内存优化

该项目开发了两种新型流水线并行算法:零气泡和可控内存流水线并行。零气泡算法几乎消除了流水线并行的气泡,保持同步语义;可控内存算法显著降低激活内存使用,同时维持或提高吞吐量。项目实现了ZB1P、ZB2P和ZBV等多种调度策略,平衡吞吐量和内存效率。另外,项目还采用优化器后验证等技术来进一步增强性能。

GradCache - 突破GPU/TPU内存限制,实现对比学习无限扩展
GPUGithubGradient CacheJAXPytorch对比学习开源项目
Gradient Cache技术突破了GPU/TPU内存限制,可以无限扩展对比学习的批处理大小。仅需一个GPU即可完成原本需要8个V100 GPU的训练,并能够用更具成本效益的高FLOP低内存系统替换大内存GPU/TPU。该项目支持Pytorch和JAX框架,并已整合至密集段落检索工具DPR。
bigflow - 简化GCP数据流水线开发的高效Python框架
BigFlowGCPGithubPython框架开源项目数据处理部署
BigFlow是一个专为Google Cloud Platform (GCP)设计的数据处理框架。该框架提供Docker化部署、CLI工具、自动化构建与部署、统一项目结构,并支持GCP主要数据处理技术。BigFlow优化了数据工程流程,支持Dataflow和BigQuery,适用于不同规模的数据处理项目。框架还包含项目启动器,帮助快速搭建工程环境。
bbr - 高性能网络拥塞控制算法开源实现
BBRGithubQUICTCP开源开源项目拥塞控制
BBR项目是一个开源的网络拥塞控制算法实现。它提供了TCP和QUIC协议的BBRv1和BBRv3版本代码,同时包含详细文档、脚本和相关材料。项目包括快速入门指南和FAQ,并设有公开邮件列表供讨论和分享测试结果。BBR算法旨在提升网络传输效率,可应用于多种网络环境。
zeta - 通过模块化组件提升AI模型开发速度
GithubZeta人工智能模型开源项目模块化神经网络高性能
Zeta项目提供模块化、高性能和可扩展的构建块,使AI模型开发速度提高80%。该项目的功能模块包括Flash Attention、SwiGLU激活函数和RelativePositionBias,这些组件大幅提升了模型的效率和性能。Zeta专注于可用性、模块化和性能,已被广泛应用于数百个模型中。用户可以通过简单的安装步骤,快速开始模型的原型设计、训练和优化。
OpenPipe - 开源模型微调和托管平台,兼容多种LLM
GPT-3.5GithubMistralOpenPipe开源项目模型微调模型托管
OpenPipe是一个开源平台,专注于通过昂贵的大型语言模型(LLM)对小型模型进行微调,满足特定需求。平台支持OpenAI和微调模型间的无缝切换,提供强大的日志查询和模型评估功能,用户可轻松导入数据集并优化模型性能。支持Python和TypeScript SDK,兼容OpenAI聊天完成端点,提供GPT 3.5、Mistral、Llama 2等多种模型的微调和托管服务。
aphros - 高性能多相流体模拟引擎 支持大规模气泡液滴计算
AphrosGithub多相流并行计算开源项目有限体积法表面张力
Aphros是一款高性能不可压缩多相流体模拟求解器。基于C++14开发,可扩展至数千计算节点。主要特点包括SIMPLE或Bell-Colella-Glaz流体求解、PLIC体积流体平流、低分辨率曲率估计、Multi-VOF防聚并技术等。适用于破碎波浪、微流控、无隔膜电解等多相流模拟场景。
ColossalAI - 提升大型AI模型训练的效率和可访问性
AI加速Colossal-AIGithub人工智能分布式训练大模型并行训练开源项目热门
Colossal-AI致力于使大型AI模型的训练更加经济、快速且易于获取。通过支持多种并行策略,包括数据并行、流水线并行、张量并行和序列并行,Colossal-AI可以大幅提高大规模模型训练的速度。此外,还集成了异构训练和零冗余优化器技术,使得在多GPU集群上的训练过程更加高效和灵活。Colossal-AI通过这些先进的功能,已被广泛应用于生产和研究场景,显著推动了AI技术的进步和应用。
pipelines - 基于Kubernetes的机器学习工作流程编排平台
GithubKubeflowKubernetes工作流程开源项目机器学习管道
Kubeflow Pipelines是基于Kubernetes的机器学习工作流程编排平台,旨在简化ML工作流的部署和管理。该平台提供端到端的编排功能,支持快速实验和组件复用,便于构建完整的ML解决方案。通过Kubeflow Pipelines SDK,开发者可创建可重用、可扩展的ML管道,提高ML项目的效率和可管理性。
libai - 支持多种并行训练的大规模模型训练工具
CV任务GithubLiBaiNLP任务OneFlow开源项目模型训练
LiBai是基于OneFlow的大规模开源模型训练工具,支持数据并行、张量并行和流水线并行等多种训练组件。提供分布式训练、混合精度训练、激活检查点等多种技术,适用于计算机视觉和自然语言处理任务。LiBai易于使用,模块化设计便于研究项目的搭建,同时具备高效性能,支持CIFAR、ImageNet和BERT等数据集的处理。
perpetual - 自优化梯度提升机器学习算法
GithubPerpetualBooster开源项目梯度提升机自动机器学习过拟合预防预测性能
PerpetualBooster是一种创新的梯度提升机器算法,无需进行超参数优化。通过调整budget参数,该算法能够在单次运行中达到传统GBM算法100次迭代的精度。在多个数据集的测试中,PerpetualBooster展现出显著的性能优势,相较于LightGBM等算法,速度提升约100倍。该算法提供Python和Rust API接口,适用于回归和分类任务。这种高效的机器学习方法特别适用于需要快速建模和预测的场景,如金融分析、推荐系统和风险评估等领域。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号